Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing chemical space with alkaloid-inspired libraries

Abstract

Screening of small-molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries because of their structural complexity and sp3-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp3 content, comparable to a basis set of representative natural products and were highly rule-of-five compliant.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategic overview of natural-product families selected for library expansion and corresponding scaffold selection.
Figure 2: Construction of primary and secondary scaffolds.
Figure 3: Library construction from Stemonaceae and cylindricine alkaloid-inspired scaffolds.
Figure 4: Library construction from sparteine and mesembrine-inspired scaffolds.
Figure 5: Representative selection of library compounds used in cheminformatic analyses.
Figure 6: Cheminformatic analysis of alkaloid-inspired scaffolds and library members.

Similar content being viewed by others

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

    Article  CAS  Google Scholar 

  2. Butler, M. S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25, 475–516 (2008).

    Article  CAS  Google Scholar 

  3. Paterson, I. & Anderson, E. A. Chemistry. The renaissance of natural products as drug candidates. Science 310, 451–453 (2005).

    Article  Google Scholar 

  4. Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).

    Article  CAS  Google Scholar 

  5. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  6. Boldi, A. M. Libraries from natural product-like scaffolds. Curr. Opin. Chem. Biol. 8, 281–286 (2004).

    Article  CAS  Google Scholar 

  7. Thomas, G. L. & Johannes, C. W. Natural product-like synthetic libraries. Curr. Opin. Chem. Biol. 15, 516–522 (2011).

    Article  CAS  Google Scholar 

  8. Camp, D., Davis, R. A., Evans-Illidge, E. A. & Quinn, R. J. Guiding principles for natural product drug discovery. Future Med. Chem. 4, 1067–1084 (2012).

    Article  CAS  Google Scholar 

  9. Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    Article  CAS  Google Scholar 

  10. Zuegg, J. & Cooper, M. A. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Curr. Top. Med. Chem. 12, 1500–1513 (2012).

    Article  CAS  Google Scholar 

  11. Njardarson, J. T., Gaul, C., Shan, D., Huang, X-Y. & Danishefsky, S. J. Discovery of potent cell migration inhibitors through total synthesis: lessons from structure–activity studies of (+)-migrastatin. J. Am. Chem. Soc. 126, 1038–1040 (2004).

    Article  CAS  Google Scholar 

  12. Szpilman, A. M. & Carreira, E. M. Probing the biology of natural products. Molecular editing by diverted total synthesis. Angew. Chem. Int. Ed. 49, 9592–9628 (2010).

    Article  CAS  Google Scholar 

  13. Wetzel, S., Bon, R. S., Kumar, K. & Waldmann, H. Biology-oriented synthesis. Angew. Chem. Int. Ed. 50, 10800–10826 (2011).

    Article  CAS  Google Scholar 

  14. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  Google Scholar 

  15. Huigens, R. W. et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chem. 5, 195–202 (2013).

    Article  CAS  Google Scholar 

  16. Kim, Y. K. et al. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc. 126, 14740–14745 (2004).

    Article  CAS  Google Scholar 

  17. Shelat, A. A. & Guy, R. K. Scaffold composition and biological relevance of screening libraries. Nature Chem. Biol. 3, 442–446 (2007).

    Article  CAS  Google Scholar 

  18. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  19. Clemons, P. A. et al. Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc. Natl Acad. Sci. USA 108, 6817–6822 (2011).

    Article  CAS  Google Scholar 

  20. Lovering, F. Escape from flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  21. Nandy, J. P. et al. Advances in solution- and solid-phase synthesis toward the generation of natural product-like libraries. Chem. Rev. 109, 1999–2060 (2009).

    Article  CAS  Google Scholar 

  22. MacLellan, P. & Nelson, A. A conceptual framework for analysing and planning synthetic approaches to diverse lead-like scaffolds. Chem. Commun. 49, 2383–2393 (2013).

    Article  CAS  Google Scholar 

  23. Evans, B. E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988).

    Article  CAS  Google Scholar 

  24. DeSimone, R. W., Currie, K. S., Mitchell, S. A., Darrow, J. W. & Pippin, D. A. Privileged structures: applications in drug discovery. Comb. Chem. High T. Scr. 7, 473–493 (2004).

    CAS  Google Scholar 

  25. Costantino, L. & Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem. 13, 65–85 (2006).

    Article  CAS  Google Scholar 

  26. Duarte, C. D., Barreiro, E. J. & Fraga, C. A. M. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini-Rev. Med. Chem. 7, 1108–1119 (2007).

    Article  CAS  Google Scholar 

  27. Costantino, L. & Barlocco, D. Privileged structures as leads in medicinal chemistry. Front. Med. Chem. 5, 381–422 (2010).

    CAS  Google Scholar 

  28. Verma, A. et al. Nitrogen-containing privileged structures and their solid phase combinatorial synthesis. Comb. Chem. High T. Scr. 16, 345–393 (2013).

    CAS  Google Scholar 

  29. Frankowski, K. J. et al. Synthesis and receptor profiling of Stemona alkaloid analogues reveal a potent class of sigma ligands. Proc. Natl Acad. Sci. USA 108, 6727–6732 (2011).

    Article  CAS  Google Scholar 

  30. Pilli, R. A., Rosso, G. B. & de Oliveira, M. d. C. F. The Stemona alkaloids. Alkaloids 62, 77–173 (2005).

    CAS  PubMed  Google Scholar 

  31. Pilli, R. A., Rosso, G. B. & de Oliveira, M. d. C. F. The chemistry of Stemona alkaloids: an update. Nat. Prod. Rep. 27, 1908–1937 (2010).

    Article  CAS  Google Scholar 

  32. Weinreb, S. M. Studies on total synthesis of the cylindricine/fasicularin/ lepadiformine family of tricyclic marine alkaloids. Chem. Rev. 106, 2531–2549 (2006).

    Article  CAS  Google Scholar 

  33. Gericke, N. & Viljoen, A. M. Sceletium—a review update. J. Ethnopharm. 119, 653–663 (2008).

    Article  CAS  Google Scholar 

  34. Perez, E. G., Mendez-Galvez, C. & Cassels, B. K. Cytisine: a natural product lead for the development of drugs acting at nicotinic acetylcholine receptors. Nat. Prod. Rep. 29, 555–567 (2012).

    Article  CAS  Google Scholar 

  35. Daly, J. W. Nicotinic agonists, antagonists, and modulators from natural sources. Cell. Mol. Neurobiol. 25, 513–552 (2005).

    Article  CAS  Google Scholar 

  36. Wrobleski, A., Coombs, T. C., Huh, C. W., Li, S-W. & Aubé, J. The Schmidt reaction. Org. React. 78, 1–320 (2012).

    CAS  Google Scholar 

  37. Zeng, Y., Reddy, D. S., Hirt, E. & Aube, J. Domino reactions that combine an azido–Schmidt ring expansion with the Diels–Alder reaction. Org. Lett. 6, 4993–4995 (2004).

    Article  CAS  Google Scholar 

  38. Gracias, V., Frank, K. E., Milligan, G. L. & Aubé, J. Ring expansion by in situ tethering of hydroxy azides to ketones: the Boyer reaction. Tetrahedron 53, 16241–16252 (1997).

    Article  CAS  Google Scholar 

  39. Smith, B. T., Wendt, J. A. & Aube, J. First asymmetric total synthesis of (+)-sparteine. Org. Lett. 4, 2577–2579 (2002).

    Article  CAS  Google Scholar 

  40. Meyer, A. M., Katz, C. E., Li, S-W., Vander Velde, D. & Aube?, J. A tandem Prins/Schmidt reaction approach to marine alkaloids: formal and total syntheses of lepadiformines A and C. Org. Lett. 12, 1244–1247 (2010).

    Article  CAS  Google Scholar 

  41. Fenster, E. et al. Three-component synthesis of 1,4-diazepin-5-ones and the construction of γ-turn-like peptidomimetic libraries. J. Comb. Chem. 10, 230–234 (2008).

    Article  CAS  Google Scholar 

  42. Trost, B. M. & Bogdanowicz, M. J. New synthetic reactions. X. Versatile cyclobutanone (spiroannelation) and γ-butyrolactone (lactone annelation) synthesis. J. Am. Chem. Soc. 95, 5321–5334 (1973).

    Article  CAS  Google Scholar 

  43. Li, X. & Danishefsky, S. J. Cyclobutenone as a highly reactive dienophile: expanding upon Diels–Alder paradigms. J. Am. Chem. Soc. 132, 11004–11005 (2010).

    Article  CAS  Google Scholar 

  44. Xue, L., Stahura, F. & Bajorath, J. in Chemoinformatics Vol. 275 (ed. Jürgen Bajorath) Ch. 9, 279–289 (Humana, 2004).

    Google Scholar 

  45. Kopp, F., Stratton, C. F., Akella, L. B. & Tan, D. S. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nature Chem. Biol. 8, 358–365 (2012).

    Article  CAS  Google Scholar 

  46. Sauer, W. H. B. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    Article  CAS  Google Scholar 

  47. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  Google Scholar 

  48. Bauer, R. A., Wurst, J. M. & Tan, D. S. Expanding the range of ‘druggable’ targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 14, 308–314 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Porubsky and B. Neuenswander for purification of library compounds. The authors also acknowledge financial support from the US Institute of General Medical Sciences (P41 GM089164, Pilot-scale Libraries Initiative; 5P50GM069663, KU Chemical Methodologies and Library Development Center) and an NSF-MRI grant (CHE-0923449) for the purchase of an X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Contributions

M.C.M., J.N.P., D.R., G.S. and J.A. designed the experiments and analysed the data. M.C.M., J.N.P., D.R. and G.S. performed the synthesis and characterization. J.L.W. and M.C.M. performed the cheminformatic analysis and V.W.D. performed and analysed the X-ray structures. M.C.M. and J.A. wrote the manuscript.

Corresponding author

Correspondence to Jeffrey Aubé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 0 kb)

Supplementary information

Supplementary information (XLSX 338 kb)

Supplementary information

Crystallographic data for compound 3b (CIF 15 kb)

Supplementary information

Crystallographic data for compound 3c (CIF 15 kb)

Supplementary information

Crystallographic data for compound 3d (CIF 28 kb)

Supplementary information

Crystallographic data for compound 29d(2) (CIF 19 kb)

Supplementary information

Crystallographic data for compound 29c(8) (CIF 20 kb)

Supplementary information

Crystallographic data for compound 42(13) (CIF 17 kb)

Supplementary information

Crystallographic data for compound 43b(23) (CIF 19 kb)

Supplementary information

Crystallographic data for compound S3b (CIF 15 kb)

Supplementary information

Crystallographic data for compound S3c (CIF 27 kb)

Supplementary information

Crystallographic data for compound S3d (CIF 38 kb)

Supplementary information

Crystallographic data for compound S6 (CIF 19 kb)

Supplementary information

Crystallographic data for compound S14 (CIF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLeod, M., Singh, G., Plampin, J. et al. Probing chemical space with alkaloid-inspired libraries. Nature Chem 6, 133–140 (2014). https://doi.org/10.1038/nchem.1844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing