Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby

Abstract

Although the local environment of a molecule can play an important role in its chemistry, rarely has it been examined experimentally at the level of individual molecules. Here we report the precise control of intramolecular hydrogen-transfer (tautomerization) reactions in single molecules using scanning tunnelling microscopy. By placing, with atomic precision, a copper adatom close to a porphycene molecule, we found that the tautomerization rates could be tuned up and down in a controlled fashion, surprisingly also at rather large separations. Furthermore, we extended our study to molecular assemblies in which even the arrangement of the pyrrolic hydrogen atoms in the neighbouring molecule influences the tautomerization reaction in a given porphycene, with positive and negative cooperativity effects. Our results highlight the importance of controlling the environment of molecules with atomic precision and demonstrate the potential to regulate processes that occur in a single molecule.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Porphycene molecules on a Cu(110) surface.
Figure 2: STM-induced tautomerization of single porphycene molecules.
Figure 3: Controlling tautomerization by single adatoms.
Figure 4: Potential well deformation by a single copper atom.
Figure 5: Cooperativity in switching single molecules within assemblies.

Similar content being viewed by others

References

  1. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  2. Dunitz, J. D. Chemical reaction paths. Phil. Trans. R. Soc. Lond. B. 272, 99–108 (1975).

    Article  CAS  Google Scholar 

  3. Harikumar, K. R. et al. Cooperative molecular dynamics in surface reactions. Nature Chem. 1, 716–721 (2009).

    Article  CAS  Google Scholar 

  4. Robota, H. J., Vielhaber, W., Lin, M. C., Segner, J. & Ertl, G. Dynamics of interaction of H2 and D2 with Ni(110) and Ni(111) surfaces. Surf. Sci. 155, 101–120 (1985).

    Article  CAS  Google Scholar 

  5. Dri, C., Peters, M. V., Schwarz, J., Hecht, S. & Grill, L. Spatial periodicity in molecular switching. Nature Nanotech. 3, 649–653 (2008).

    Article  CAS  Google Scholar 

  6. Alemani, M. et al. Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces; Au(111), Cu(111) and Au(100). J. Phys. Chem. C 112, 10509–10514 (2008).

    Article  CAS  Google Scholar 

  7. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  8. Kim, H. W. et al. Control of molecular rotors by selection of anchoring sites. Phys. Rev. Lett. 106, 146101 (2011).

    Article  Google Scholar 

  9. Yamachika, R., Grobis, M., Wachowiak, A. & Crommie, M. F. Controlled atom doping of a single C60 molecule. Science 304, 281–284 (2004).

    Article  CAS  Google Scholar 

  10. Gross, L. et al. Trapping and moving metal atoms with a six-leg molecule. Nature Mater. 4, 892–895 (2005).

    Article  CAS  Google Scholar 

  11. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  Google Scholar 

  12. Ecija, D. et al. Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. Angew. Chem. Int. Ed. 50, 3872–3877 (2011).

    Article  CAS  Google Scholar 

  13. Soe, W-H. et al. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5, 1436–1440 (2011).

    Article  CAS  Google Scholar 

  14. Uhlmann, C., Swart, I. & Repp, J. Controlling the orbital sequence in individual Cu–phthalocyanine molecules. Nano Lett. 13, 777–780 (2013).

    Article  CAS  Google Scholar 

  15. Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  CAS  Google Scholar 

  16. Nacci, C., Erwin, S. C., Kanisawa, K. & Fölsch, S. Controlled switching within an organic molecule deliberately pinned to a semiconductor surface. ACS Nano 6, 4190–4195 (2012).

    Article  CAS  Google Scholar 

  17. Tokumaru, K., Arai, T. & Moriyama, M. Photochromism by the way of intramolecular hydrogen transfer in –N–H:N– bond. Mol. Cryst. Liq. Cryst. 246, 147–149 (1994).

    Article  CAS  Google Scholar 

  18. Tapia, O., Andres, J. & Safont, V. S. Theoretical study of transition structures for intramolecular hydrogen transfer in molecular models representing D-ribulose 1,5-bisphosphate. A possible molecular mechanism for the enolization step in rubisco. J. Phys. Chem. 98, 4821–4830 (1994).

    Article  CAS  Google Scholar 

  19. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  20. Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  21. Heath, J. R. & Ratner, M. A. Molecular electronics. Phys. Today 56, May, 43–49 (2003).

    Article  CAS  Google Scholar 

  22. Benesch, C. et al. Switching the conductance of a single molecule by photoinduced hydrogen transfer. J. Phys. Chem. C 113, 10315–10318 (2009).

    Article  CAS  Google Scholar 

  23. Vogel, E., Köcher, M., Schmickler, H. & Lex, J. Porphycene – a novel porphin isomer. Angew. Chem. Int. Ed. Engl. 25, 257–259 (1986).

    Article  Google Scholar 

  24. Sperl, A., Kröger, J. & Berndt, R. Controlled metalation of a single adsorbed phthalocyanine. Angew. Chem. Int. Ed. 50, 5294–5297 (2011).

    Article  CAS  Google Scholar 

  25. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech. 7, 41–46 (2012).

    Article  Google Scholar 

  26. Kozlowski, P. M., Zgierski, M. Z. & Baker, J. The inner-hydrogen migration and ground-state structure of porphycene. J. Chem. Phys. 109, 5905–5913 (1998).

    Article  CAS  Google Scholar 

  27. Wu, Y-D. et al. Porphyrin isomers: geometry, tautomerism, geometrical isomerism, and stability. J. Org. Chem. 62, 9240–9250 (1997).

    Article  CAS  Google Scholar 

  28. Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. (in the press).

  29. Gil, M. et al. Unusual, solvent viscosity-controlled tautomerism and photophysics: meso-alkylated porphycenes. J. Am. Chem. Soc. 132, 13472–13485 (2010).

    Article  CAS  Google Scholar 

  30. Stroscio, J. A. & Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 306, 242–247 (2004).

    Article  CAS  Google Scholar 

  31. Bogicevic, A. et al. Nature, strength, and consequences of indirect adsorbate interactions on metals. Phys. Rev. Lett. 85, 1910–1913 (2000).

    Article  CAS  Google Scholar 

  32. Ram, R. S., Bernath, P. F. & Brault, J. W. Fourier transform emission spectroscopy: the vibration–rotation spectrum of CuH. J. Mol. Spectrosc. 113, 269–274 (1985).

    Article  CAS  Google Scholar 

  33. Castro, M., Cruz, J., López-Sandoval, H. & Barba-Behrens, N. On the CH···Cu agostic interaction: chiral copper(II) compounds with ephedrine and pseudoephedrine derivatives. Chem. Commun. 3779–3781 (2005).

  34. Haq, S. et al. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. J. Am. Chem. Soc. 133, 12031–12039 (2011).

    Article  CAS  Google Scholar 

  35. Maksymovych, P., Sorescu, D. C. & Yates, J. T. Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(III) surface. Phys. Rev. Lett. 97, 146103 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Ernstorfer for careful reading of the manuscript, the Japan Society for the Promotion of Science (T.K.), the German Science Foundation (SFB 658), the European Union (AtMol and ARTIST), the Polish National Science Centre (3550/B/H03/2011/40) and VR (M.P.) for financial support and EPSRC (EP/F067496) through MCC, SNIC and PRACE for computer resources at HECTOR and PDC Center for High Performance Computing.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and L.G. conceived the experiments and discussed the results. T.K. performed the STM measurements and analysed the data. F.H., J.S., K.K. and M.P. carried out the DFT calculations. S.G. and J.W. provided the molecules. T.K., M.P. and L.G. wrote the paper.

Corresponding author

Correspondence to Leonhard Grill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, T., Hanke, F., Gawinkowski, S. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nature Chem 6, 41–46 (2014). https://doi.org/10.1038/nchem.1804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing