Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries


The ability to repair damage spontaneously, which is termed self-healing, is an important survival feature in nature because it increases the lifetime of most living creatures. This feature is highly desirable for rechargeable batteries because the lifetime of high-capacity electrodes, such as silicon anodes, is shortened by mechanical fractures generated during the cycling process. Here, inspired by nature, we apply self-healing chemistry to silicon microparticle (SiMP) anodes to overcome their short cycle-life. We show that anodes made from low-cost SiMPs (~3–8 µm), for which stable deep galvanostatic cycling was previously impossible, can now have an excellent cycle life when coated with a self-healing polymer. We attain a cycle life ten times longer than state-of-art anodes made from SiMPs and still retain a high capacity (up to ~3,000 mA h g−1). Cracks and damage in the coating during cycling can be healed spontaneously by the randomly branched hydrogen-bonding polymer used.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and structure of the self-healing electrode.
Figure 2: Characterization of the self-healing composite material.
Figure 3: Electrochemical properties of SiMP electrodes.
Figure 4: Cycling properties of the self-healing SiMP electrode.
Figure 5: Structure of the self-healing SiMP electrode during electrochemical cycling.


  1. 1

    Bergman, S. D. & Wudl, F. Mendable polymers. J. Mater. Chem. 18, 41–62 (2008).

    CAS  Article  Google Scholar 

  2. 2

    White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Tee, B. C., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol. 7, 825–832 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chem. 4, 467–472 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Li, Y., Li, L. & Sun, J. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 49, 6129–6133 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Wong, T-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Williams, K. A., Boydston, A. J. & Bielawski, C. W. Towards electrically conductive, self-healing materials. J. Royal Soc. Interface 4, 359–362 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Blaiszik, B. J. et al. Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Li, Y., Chen, S., Wu, M. & Sun, J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv. Mater. 24, 4578–4582 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Palleau, E., Reece, S., Desai, S. C., Smith, M. E. & Dickey, M. D. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589–1592 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009).

    Article  Google Scholar 

  17. 17

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Cheng, Y-T. & Verbrugge, M. W. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008).

    Article  Google Scholar 

  19. 19

    Besenhard, J. O., Yang, J. & Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 68, 87–90 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  PubMed  Google Scholar 

  24. 24

    Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnol. 7, 309–314 (2012).

    Google Scholar 

  26. 26

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31–35 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 333, 75–79 (2011).

    Article  Google Scholar 

  28. 28

    Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Guo, J. & Wang, C. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 46, 1428–1430 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Kim, H., Han, B., Choo, J. & Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Ryou, M-H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 25, 1571–1576 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Chevrier, V. et al. in 30th International Battery Seminar: Primary and Secondary Batteries – Other Materials Vol. 1, 579–611 (Curren Associates).

  37. 37

    Chen, Z., Chevrier, V., Christensen, L. & Dahn, J. R. Design of amorphous alloy electrodes for Li-ion batteries: a big challenge. Electrochem. Solid-State Lett. 7, A310–A314 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Kasavajjula, U., Wang, C. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Liu, W. R. et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 140, 139–144 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Ryu, J. H., Kim, J. W., Sung, Y .E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306–A309 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Yi, R., Dai, F., Gordin, M. L., Chen, S. & Wang, D. Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Wang, L. et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 18, 509–514 (1997).

    CAS  Article  Google Scholar 

  44. 44

    Montarnal, D., Tournilhac, F. O., Hidalgo, M., Couturier, J-L. & Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131, 7966–7967 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Lestriez, B., Bahri, S., Sandu, I., Roué, L. & Guyomard, D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 9, 2801–2806 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Szczech, J. R. & Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Saint, J. et al. Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 17, 1765–1774 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Chen, Z., Christensen, L. & Dahn, J. R. Comparison of PVDF and PVDF–TFE–P as binders for electrode materials showing large volume changes in lithium-ion batteries. J. Electrochem. Soc. 150, A1073–A1078 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Liu, W-R., Yang, M-H., Wu, H-C., Chiao, S. M. & Wu, N-L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid-State Lett. 8, A100–A103 (2005).

    CAS  Article  Google Scholar 

Download references


Y.C. and Z.B. acknowledge funding support from the Department of Energy, through the SLAC National Accelerator Laboratory LDRD project, under contract DE-AC02-76SF00515, and from the Precourt Institute for Energy at Stanford University.

Author information




C.W., H.W., Y.C. and Z.B. conceived and designed the experiments. Y.C. and Z.B. directed the project. C.W. prepared the self-healing materials. H.W. and Z.C. performed the battery assembly and characterization experiments. All authors discussed and analysed the data. C.W., H.W. and M.T.M. co-wrote the first draft of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yi Cui or Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1482 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, C., Wu, H., Chen, Z. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem 5, 1042–1048 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing