Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Singlet exciton fission in solution

An Erratum to this article was published on 17 December 2013

This article has been updated

Abstract

Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley–Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of TIPS-pentacene.
Figure 2: Transient absorption spectra of TIPS-pentacene.
Figure 3: Triplet yield in TIPS-pentacene solutions.
Figure 4: Ultrafast transient absorption spectra of TIPS-pentacene with a time resolution of 0.28 ps.
Figure 5: Photoluminescence of TIPS-pentacene solutions.
Figure 6: TDDFT analysis of TIPS-pentacene excimer structures.

Similar content being viewed by others

Change history

  • 21 November 2013

    In the version of this Article originally published, the colour scales on Figs 2 and 4 were incorrect. These have now been corrected in the online versions of the Article.

References

  1. Singh, S., Jones, W. J., Siebrand, W., Stoicheff, B. P. & Schneider, W. G. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42, 330–342 (1965).

    Article  CAS  Google Scholar 

  2. Swenberg, C. E. & Tracy, W. T. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968).

    Article  CAS  Google Scholar 

  3. Geacintov, N., Pope, M. & Vogel, F. Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22, 593–596 (1969).

    Article  CAS  Google Scholar 

  4. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  CAS  Google Scholar 

  5. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annual review of Physical Chemistry 64, 361–386 (2013).

    Article  CAS  Google Scholar 

  6. Merrifield, R. E. Diffusion and mutual annihilation of triplet excitons in organic crystals. Acc. Chem. Res. 1, 129–135 (1968).

    Article  CAS  Google Scholar 

  7. Merrifield, R. E., Avakian, P. & Groff, R. P. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 155–157 (1969).

    Article  CAS  Google Scholar 

  8. Chan, W., Ligges, M. & Zhu, X-Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem. 4, 840–845 (2012).

    Article  CAS  Google Scholar 

  9. Jundt, C. et al. Exciton dynamics in pentacene thin films studied by pump–probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995).

    Article  CAS  Google Scholar 

  10. Vilar, M. R., Heyman, M. & Schott, M. Spectroscopy of low-energy electrons backscattered from an organic solid surface: pentacene. Chem. Phys. Lett. 94, 522–526 (1983).

    Article  Google Scholar 

  11. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  12. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  Google Scholar 

  13. Jadhav, P. J. et al. Triplet exciton dissociation in singlet exciton fission photovoltaics. Adv. Mater. 24, 6169–6174 (2012).

    Article  CAS  Google Scholar 

  14. Ehrler, B., Wilson, M. W. B., Rao, A., Friend, R. H. & Greenham, N. C. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012).

    Article  CAS  Google Scholar 

  15. Paci, I. et al. Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J. Am. Chem. Soc. 128, 16546–16553 (2006).

    Article  CAS  Google Scholar 

  16. Zimmerman, P. M., Zhang, Z. & Musgrave, C. B. Singlet fission in pentacene through multi-exciton quantum states. Nature Chem. 2, 648–652 (2010).

    Article  CAS  Google Scholar 

  17. Zimmerman, P. M., Bell, F., Casanova, D. & Head-Gordon, M. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J. Am. Chem. Soc. 133, 19944–19952 (2011).

    Article  CAS  Google Scholar 

  18. Greyson, E. C., Vura-Weis, J., Michl, J. & Ratner, M. A. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114, 14168–14177 (2010).

    Article  CAS  Google Scholar 

  19. Chan, W-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    Article  CAS  Google Scholar 

  20. Zimmerman, P. M., Musgrave, C. B. & Head-Gordon, M. A correlated electron view of singlet fission. Acc. Chem. Res. 46, 1339–1347 (2013).

    Article  CAS  Google Scholar 

  21. Beljonne, D., Yamagata, H., Brédas, J. L., Spano, F. C. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    Article  CAS  Google Scholar 

  22. Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012).

    Article  CAS  Google Scholar 

  23. Burdett, J. J., Müller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010).

    Article  Google Scholar 

  24. Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    Article  Google Scholar 

  25. Sheraw, C. D., Jackson, T. N., Eaton, D. L. & Anthony, J. E. Functionalized pentacene active layer organic thin-film transistors. Adv. Mater. 15, 2009–2011 (2003).

    Article  CAS  Google Scholar 

  26. Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011).

    Article  CAS  Google Scholar 

  27. Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Mater. 7, 216–221 (2008).

    Article  CAS  Google Scholar 

  28. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    Article  CAS  Google Scholar 

  29. Ramanan, C., Smeigh, A. L., Anthony, J. E., Marks, T. J. & Wasielewski, M. R. Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc. 134, 386–397 (2012).

    Article  CAS  Google Scholar 

  30. Van Hal, P. A. et al. Photoinduced singlet and triplet energy transfer in fullerene–oligothiophene–fullerene triads. Synthetic Met. 116, 123–127 (2001).

    Article  CAS  Google Scholar 

  31. Berg, O. G. & von Hippel, P. H. Diffusion-controlled macromolecular interactions. Ann. Rev. Biophys. Biophys. Chem. 14, 131–160 (1985).

    Article  CAS  Google Scholar 

  32. Ehrler, B. et al. In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Commun. 3, 1019 (2012).

    Article  Google Scholar 

  33. Dreuw, A., Weisman, J. L. & Head-Gordon, M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J. Chem. Phys. 119, 2943 (2003).

    Article  CAS  Google Scholar 

  34. Mannsfeld, S. C. B., Tang, M. L. & Bao, Z. Thin film structure of triisopropylsilylethynyl-functionalized pentacene and tetraceno[2,3-b]thiophene from grazing incidence X-ray diffraction. Adv. Mater. 23, 127–131 (2011).

    Article  CAS  Google Scholar 

  35. Johnson, J. C., Nozik, A. J. & Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46, 1290–1299 (2013).

    Article  CAS  Google Scholar 

  36. Renaud, N., Sherratt, P. A. & Ratner, M. A. Mapping the relation between stacking geometries and singlet fission yield in a class of organic crystals. J. Phys. Chem. Lett. 4, 1065–1069 (2013).

    Article  CAS  Google Scholar 

  37. Rao, A. et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010).

    Article  CAS  Google Scholar 

  38. Müller, A. M., Avlasevich, Y. S., Müllen, K. & Bardeen, C. J. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett. 421, 518–522 (2006).

    Article  Google Scholar 

  39. Müller, A. M., Avlasevich, Y. S., Schoeller, W. W., Müllen, K. & Bardeen, C. J. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007).

    Article  Google Scholar 

  40. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010).

    Article  CAS  Google Scholar 

  41. Schulten, K., Ohmine, I. & Karplus, M. Correlation effects in the spectra of polyenes. J. Chem. Phys. 64, 4422–4441 (1976).

    Article  CAS  Google Scholar 

  42. Gradinaru, C. C. et al. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl Acad. Sci. USA 98, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  43. Barford, W. Electronic and Optical Properties of Conjugated Polymers (Oxford Univ. Press, 2005).

    Google Scholar 

  44. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138, 114102 (2013).

    Article  Google Scholar 

  45. Ito, S., Minami, T. & Nakano, M. Diradical character based design for singlet fission of condensed- ring systems with 4 electrons. J. Phys. Chem. C 116, 19729–19736 (2012).

    Article  CAS  Google Scholar 

  46. Chan, W-L., Tritsch, J. R. & Zhu, X-Y. Harvesting singlet fission for solar energy conversion: one- versus two-electron transfer from the quantum mechanical superposition. J. Am. Chem. Soc. 134, 18295–18302 (2012).

    Article  CAS  Google Scholar 

  47. Azarova, N. A. et al. Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org. Electron 11, 1960–1965 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.J.W. was supported by a Herchel Smith Research Fellowship. A.J.M. received funding from a Marie Curie Scholarship. D.B. is a FNRS Research Director. Both A.J.M and D.B. acknowledge support from the European Community's Initial Training Network SUPERIOR (PITN-GA-2009-238177). Further funding for this project came from the Engineering and Physical Sciences Research Council and a pump-prime grant from the Winton Programme for the Physics of Sustainability. We thank A. Rao, K. Johnson and S. Gélinas for general discussion, and D. Howe for assistance with diffusion-ordered NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

B.J.W. conceived the project, B.J.W. and A.J.M. planned and carried out the experiments, A.J.M. performed the calculations, B.J.W., A.J.M., D.B. and R.H.F. discussed the experiments and results, and B.J.W., A.J.M. and R.H.F. wrote the manuscript.

Corresponding author

Correspondence to Richard H. Friend.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2039 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, B., Musser, A., Beljonne, D. et al. Singlet exciton fission in solution. Nature Chem 5, 1019–1024 (2013). https://doi.org/10.1038/nchem.1801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing