Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

Abstract

Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl/HCO3 exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the bicarbonate transporters studied in this work.
Figure 2: Comparison of chloride efflux, measured using a chloride-selective electrode, from synthetic vesicles mediated by compounds 1–4 in nitrate and sulfate solution.
Figure 3: Results of chloride transport (measured using a chloride-selective electrode) that commenced when a bicarbonate pulse was added to the external solution.
Figure 4: 13C-NMR spectroscopy experiments demonstrated that both natural products and synthetic receptors are able to facilitate Cl/HCO3 antiport by allowing bicarbonate to enter the vesicles.
Figure 5: 13C-NMR experiments demonstrate that both natural products and synthetic receptors are able to facilitate chloride/bicarbonate antiport.

Similar content being viewed by others

References

  1. Cleland, W. W., Andrews, T. J., Gutteridge, S., Hartman, F. C. & Lorimer, G. H. Mechanism of Rubisco: the carbamate as general base. Chem. Rev. 98, 549–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hempling, H. G. in Principles of Medical Biology (eds Bittar, E. E. & Bittar, N.) Vol. 4, pp. 217–246 (Elsevier, 1996).

    Google Scholar 

  3. Lipscomb, W. N. & Strater, N. Recent advances in zinc enzymology. Chem. Rev. 96, 2375–2433 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Florman, H. M., Jungnickel M. K. & Sutton, K.A. What can we learn about fertilization from cystic fibrosis? Proc. Natl Acad. Sci. USA 104, 11123–11124 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Norris, F. A. & Powell, G. L. Characterization of CO2/carbonic acid mediated proton flux through phosphatidylcholine vesicles as model membranes. Biochim. Biophys. Acta 1111, 17–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Fujinaga, J., Loiselle, F. B. & Casey, J. R. Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins. Biochem. J. 371, 687–696 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choi, J. Y. et al. Aberrant CFTR-dependent HCO3 transport in mutations associated with cystic fibrosis. Nature 410, 94–97 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Casey, J. R. Why bicarbonate? Biochem. Cell Biol. 84, 930–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Koropatkin, N. M., Koppenaal, D. W., Pakrasi, H. B. & Smith, T. J. The structure of a cyanobacterial bicarbonate transport protein, CmpA. J. Biol. Chem. 282, 2606–2614 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Koulov, A. V. et al. Chloride transport across vesicle and cell membranes by steroid-based receptors. Angew. Chem. Int. Ed. 42, 4931–4933 (2003).

    Article  CAS  Google Scholar 

  11. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  Google Scholar 

  12. Okunola, O. A., Seganish, J. L., Salimian, K. J., Zavalij, P. Y. & Davis, J. T. Membrane-active calixarenes: toward ‘gating’ transmembrane anion transport. Tetrahedron 63, 10743–10750 (2007).

    Article  CAS  Google Scholar 

  13. You, L. & Gokel, G. W. Fluorescent, synthetic amphiphilic heptapeptide anion transporters: evidence for self-assembly and membrane localization in liposomes. Chem. Eur. J. 14, 5861–5870 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Izzo, I. et al. Cationic calix[4]arenes as anion-selective ionophores. Chem. Commun. 2986–2988 (2008).

  15. Whitmarsh, S. D., Redmond, A. P., Sgarlata, V. & Davis A. P. Cationic cyclocholamides; toroidal facial amphiphiles with potential for anion transport. Chem. Commun. 3669–3671 (2008).

  16. Gale, P. A. et al. Co-transport of H+/Cl by a synthetic prodigiosin mimic. Chem. Commun. 3773–3775 (2005).

  17. Gale, P. A., Garric, J., Light, M. E., McNally, B. A. & Smith, B. D. Conformational control of HCl co-transport: imidazole functionalised isophthalamide vs 2,6-dicarboxamidopyridine. Chem. Commun. 1736–1738 (2007).

  18. Fürstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem. Int. Ed. 42, 3582–3603 (2003).

    Article  Google Scholar 

  19. Gerber, N. N. Prodigiosin-like pigments. Crit. Rev. Microbiol. 3, 469–485 (1975).

    Article  CAS  Google Scholar 

  20. Bennett, J. W. & Bentley, R. Seeing red: the story of prodigiosin. Adv. Appl. Microbiol. 47, 1–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Williamson, N. R. et al. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2, 605–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, M. et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl Acad. Sci. USA 104, 19512–19517 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, C. et al. Cycloprodigiosin hydrochloride, a new H+/Cl symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology 30, 894–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Tanigaki, K. et al. BE-18591 as a new H+/Cl symport ionophore that inhibits immunoproliferation and gastritis. FEBS Lett. 524, 37–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sato, T. et al. Prodigiosins as a new group of H+/Cl symporters that uncouple proton translocators. J. Biol. Chem. 273, 21455–21462 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Gottlieb, R. A., Nordberg, J., Skowronski, E. & Babior, B. M. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl Acad. Sci. USA 93, 654–658 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ohkuma, S. et al. Prodigiosins uncouple vacuolar-type ATPase through H+/Cl symport. Biochem. J. 334, 731–741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sessler, J. L. et al. Synthesis, anion-binding properties, and in vitro anticancer activity of prodigiosin analogues. Angew. Chem. Int. Ed. 44, 5989–5992 (2005).

    Article  CAS  Google Scholar 

  29. Seganish, J. L. & Davis, J. T. Prodigiosin is a chloride carrier that can function as an anion exchanger. Chem. Commun. 5781–5783 (2005).

  30. Diaz, R. I. S. et al. Chloride anion transport and copper-mediated DNA cleavage by C-ring functionalized prodigiosenes. Chem. Commun. 2701–2703 (2007).

  31. Santacroce, P. V. et al. Conformational control of transmembrane Cl transport. J. Am. Chem. Soc. 129, 1886–1887 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kavallieratos, K., Bertao, C. M. & Crabtree, R. H. Hydrogen bonding in anion recognition: a family of versatile, non-preorganized neutral and acyclic receptors. J. Org. Chem. 64, 1675–1683 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Li, X., Shen, B., Yao, X. Q. & Yang, D. A. Small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes. J. Am. Chem. Soc. 129, 7264–7265 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Melvin, M. S. et al. Influence of the A-ring on the proton affinity and anticancer properties of the prodigiosins. Chem. Res. Toxicol. 15, 734–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Stefayne, D. Halochromism studies on prodigiosin. J. Org. Chem. 25, 1261–1262 (1960).

    Article  Google Scholar 

  36. Rizzo, V., Morelli, A., Pinciroli, V., Sciangula, D. & D'Alessio, R. Equilibrium and kinetics of rotamer interconversion in immunosuppressant prodigiosin derivatives in solution. J. Pharm. Sci. 88, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hofmeister, F. Zur Lehre von der Wirkung der Salze, Zweite Mittheilung. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888).

    Article  Google Scholar 

  38. Steinle, E. D., Schaller, U. & Meyerhoff, M. E. Response characteristics of anion-selective polymer membrane electrodes based on gallium(III), indium(III) and thallium(III) porphyrins. Anal. Sci. 14, 79–84 (1998).

    Article  CAS  Google Scholar 

  39. Riddell, F. G., Arumugam, S. & Patel, A. Chloride transport through model biological membranes studied by 35Cl NMR. J. Chem. Soc. Chem. Commun. 74–76 (1990).

  40. Riddell, F. G. & Zhou, Z. Mn2+ as a contrast reagent for NMR studies of 35Cl and 81Br transport through model biological membranes. J. Inorg. Biochem. 55, 279–293 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Gout, E. Bligny, R., Pascal, N. & Douce, R. 13C nuclear magnetic resonance studies of malate and citrate synthesis and compartmentation in higher plant cells, 81Br transport through model biological membranes. J. Biol. Chem. 268, 3986–3992 (1993).

    CAS  PubMed  Google Scholar 

  42. Chang, K. & Roberts, J. K. M. Quantitation of rates of transport, metabolic fluxes, and cytoplasmic levels of inorganic carbon in maize root tips during K+ ion uptake. Plant Physiol. 99, 291–297 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.T.D. and P.A.G. thank the NSF/EPSRC for funding this research through the International Collaboration in Chemistry program. R.Q. thanks the Spanish Ministerio de Educación y Ciencia for support with the Jose Castillejo mobility grant and Ramon y Cajal contract. T.T. thanks DGI of Spain for funding. O.A.O thanks the University of Maryland Graduate School for the Mabel Spencer Fellowship award. P.A.G. thanks C.C. Tong for the mass spectrometry study with prodigiosin and M.G. Fisher for fitting the NMR titration data with prodigiosin.

Author information

Authors and Affiliations

Authors

Contributions

J.T.D., P.A.G. and R.Q conceived this project, experiments, analysed data and prepared the manuscript; O.A.O. and R.Q. conducted experiments and analysed data; P.P. and T.T. contributed reagents, materials, analysis tools and supervized the synthesis; J.C.I.S. and R.Q. synthesized new compounds.

Corresponding authors

Correspondence to Jeffery T. Davis, Philip A. Gale or Roberto Quesada.

Supplementary information

Supplementary information

Supplementary information (PDF 5920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J., Gale, P., Okunola, O. et al. Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes. Nature Chem 1, 138–144 (2009). https://doi.org/10.1038/nchem.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing