Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond

Abstract

Many metal-containing compounds, and some metal-free compounds, will bind carbon monoxide. However, only a handful of metal-containing compounds have been shown to induce the coupling of two or more CO molecules, potentially a method for the use of CO as a one-carbon-atom building block for the synthesis of organic molecules. In this work, CO was added to a boron–boron triple bond at room temperature and atmospheric pressure, resulting in a compound into which four equivalents of CO are incorporated: a flat, bicyclic, bis(boralactone). By the controlled addition of one CO to the diboryne compound, an intermediate in the CO coupling reaction was isolated and structurally characterized. Electrochemical measurements confirm the strongly reducing nature of the diboryne compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected products of published metal-mediated CO-coupling reactions.
Figure 2: Synthesis of 2 and 3 and some plausible electronic descriptions of 3.
Figure 3: Molecular structures of 2 and 3.

Similar content being viewed by others

References

  1. Gmelin, L. Über einige merkwürdige, bei der Darstellung des Kaliums nach der Brunnerschen Methode, erhaltene Substanzen. Ann. Phys. Chem. 4, 31–62 (1825).

    Article  Google Scholar 

  2. Liebig, J. Über das Verhalten des Kohlenoxyds zu Kalium. Ann. Pharm. 11, 182–189 (1834).

    Article  Google Scholar 

  3. Evans, W. J., Grate, J. W., Hughes, L. A., Zhang, H. & Atwood, J. L. Reductive homologation of CO to a ketenecarboxylate by a low-valent organolanthanide complex—synthesis and X-ray crystal-structure of [(C5Me5)4Sm2(O2CCCO)(THF)]2 . J. Am. Chem. Soc. 107, 3728–3730 (1985).

    Article  CAS  Google Scholar 

  4. Evans, W. J., Lee, D. S., Ziller, J. W. & Kaltsoyannis, N. Trivalent [(C5Me5)2(THF)Ln]2(μ-η22-N2) complexes as reducing agents including the reductive homologation of CO to a ketene carboxylate, (μ-η4-O2C–C=C=O)2–. J. Am. Chem. Soc. 128, 14176–14184 (2006).

    Article  CAS  Google Scholar 

  5. Bianconi, P. A. et al. Reductive coupling of carbon monoxide ligands to form coordinated bis(trimethylsiloxy)ethyne in seven-coordinate niobium(I) and tantalum(I) [M(CO)2(dmpe)2Cl] complexes. Organometallics 6, 1968–1977 (1987).

    Article  CAS  Google Scholar 

  6. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotrimerization of carbon monoxide to the deltate dianion by an organometallic uranium complex. Science 311, 829–831 (2006).

    Article  CAS  Google Scholar 

  7. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotetramerization of CO to squarate by a U(III) complex: the X-ray crystal structure of [(U(η-C8H6{(SiPr3)-Pr-i-1,4}2)(η-C5Me4H)]2(μ-η22-C4O4). J. Am. Chem. Soc. 128, 9602–9603 (2006).

    Article  CAS  Google Scholar 

  8. Frey, A. S. et al. Mechanistic studies on the reductive cyclooligomerisation of CO by U(III) mixed sandwich complexes; the molecular structure of [U(η-C8H6{SiiPr3-1,4}2)(η-Cp*)]2(μ-η11-C2O2). J. Am. Chem. Soc. 130, 13816–13817 (2008).

    Article  CAS  Google Scholar 

  9. Arnold, P. L., Turner, Z. R., Bellabarba, R. M. & Tooze, R. P. Carbon monoxide coupling and functionalisation at a simple uranium coordination complex. Chem. Sci. 2, 77–79 (2011).

    Article  CAS  Google Scholar 

  10. Miller, A. J. M., Labinger, J. A. & Bercaw, J. E. Reductive coupling of carbon monoxide in a rhenium carbonyl complex with pendant Lewis acids. J. Am. Chem. Soc. 130, 11874–11875 (2008).

    Article  CAS  Google Scholar 

  11. Watanabe, T., Ishida, Y., Matsuo, T. & Kawaguchi, H. Reductive coupling of six carbon monoxides by a ditantalum hydride complex. J. Am. Chem. Soc. 131, 3474–3475 (2009).

    Article  CAS  Google Scholar 

  12. Wang, X. et al. Room-temperature reaction of carbon monoxide with a stable diarylgermylene. J. Am. Chem. Soc. 131, 6912–6913 (2009).

    Article  CAS  Google Scholar 

  13. Brown, Z. D. & Power, P. P. Mechanisms of reactions of open-shell, heavier group 14 derivatives with small molecules: nπ* back-bonding in isocyanide complexes, C–H activation under ambient conditions, CO coupling, and ancillary molecular interactions. Inorg. Chem. 52, 6248–6259 (2013).

    Article  CAS  Google Scholar 

  14. Teichmann, J., Stock, H., Pritzkow, H. & Siebert, W. Carbon monoxide and isonitrile insertion into the B–B bond of five-membered cyclic organo-1,2-diboranes. Eur. J. Inorg. Chem. 459–463 (1998).

  15. Sander, W., Bucher, G. & Wierlacher, S. Carbenes in matrices—spectroscopy, structure, and reactivity. Chem. Rev. 93, 1583–1621 (1993).

    Article  CAS  Google Scholar 

  16. Lavallo, V., Canac, Y., Donnadieu, B., Schoeller, W. W. & Bertrand, G. CO fixation to stable acyclic and cyclic alkyl amino carbenes: stable amino ketenes with a small HOMO–LUMO gap. Angew. Chem. Int. Ed. 45, 3488–3491 (2006).

    Article  CAS  Google Scholar 

  17. Sajid, M. et al. Facile carbon monoxide reduction at intramolecular frustrated phosphane/borane Lewis pair templates. Angew. Chem. Int. Ed. 52, 2243–2246 (2013).

    Article  CAS  Google Scholar 

  18. Dobrovetsky, R. & Stephan, D. W. Stoichiometric metal-free reduction of CO in syn-gas. J. Am. Chem. Soc. 135, 4974–4977 (2013).

    Article  CAS  Google Scholar 

  19. Asay, M. & Sekiguchi, A. Recent developments in the reactivity of stable disilynes. Bull. Chem. Soc. Jpn 85, 1245–1261 (2012).

    Article  CAS  Google Scholar 

  20. Segawa, Y., Suzuki, Y., Yamashita, M. & Nozaki, K. Chemistry of boryllithium: synthesis, structure, and reactivity. J. Am. Chem. Soc. 130, 16069–16079 (2008).

    Article  CAS  Google Scholar 

  21. Aramaki, Y. et al. Synthesis and characterization of B-heterocyclic π-radical and its reactivity as a boryl radical. J. Am. Chem. Soc. 134, 19989–19992 (2012).

    Article  CAS  Google Scholar 

  22. Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011).

    Article  CAS  Google Scholar 

  23. Braunschweig, H. et al. Ambient-temperature isolation of a compound with a boron–boron triple bond. Science 336, 1420–1422 (2012).

    Article  CAS  Google Scholar 

  24. Olmstead, M. M., Power, P. P., Weese, K. J. & Doedens, R. J. Isolation and X-ray crystal structure of the boron methylidenide ion [Mes2BCH2] (Mes = 2,4,6-Me3C6H2)—a boron–carbon double bonded alkene analogue. J. Am. Chem. Soc. 109, 2541–2542 (1987).

    Article  CAS  Google Scholar 

  25. Hoefelmeyer, J. D., Sole, S. & Gabbaï, F. P. Reactivity of the dimesityl-1,8-naphthalenediylborate anion: isolation of the borataalkene isomer and synthesis of 1,8-diborylnaphthalenes. Dalton Trans. 1254–1258 (2004).

  26. Chiu, C. W. & Gabbaï, F. P. Structural changes accompanying the stepwise population of a B–C π bond. Angew. Chem. Int. Ed. 46, 6878–6881 (2007).

    Article  CAS  Google Scholar 

  27. Wuckelt, J., Doring, M., Langer, P., Gorls, H. & Beckert, R. Lactam analogues of pentalene. A new one-pot synthesis of pyrrolo[3,2-b]pyrrole-2,5-diones deriving from pulvinic acid. Tetrahedron Lett. 38, 5269–5272 (1997).

    Article  CAS  Google Scholar 

  28. Gaylord, M. C., Benedict, R. G., Hatfield, G. M. & Brady, L. R. Isolation of diphenyl-substituted tetronic acids from cultures of Paxillus atrotomentosus. J. Pharm. Sci. 59, 1420–1423 (1970).

    Article  CAS  Google Scholar 

  29. Lunak, S., Vynuchal, J. & Hrdina, R. Geometry and absorption of diketo-pyrrolo-pyrrole isomers and their pi-isoelectronic furo-furanone analogues. J. Mol. Struct. 919, 239–245 (2009).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. A stable neutral diborene containing a B=B double bond. J. Am. Chem. Soc. 129, 12412–12413 (2007).

    Article  CAS  Google Scholar 

  31. Jacobsen, H. et al. Lewis acid properties of tris(pentafluorophenyl)borane. Structure and bonding in L-B(C6F5)3 complexes. Organometallics 18, 1724–1735 (1999).

    Article  CAS  Google Scholar 

  32. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  Google Scholar 

  33. Enemaerke, R. J., Daasbjerg, K. & Skrydstrup, T. Is samarium diiodide an inner- or outer-sphere electron donating agent? Chem. Commun. 343–344 (1999).

  34. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  Google Scholar 

  35. Braunschweig, H., Radacki, K., Shang, R. & Tate, C. W. Reversible intramolecular coupling of the terminal borylene and a carbonyl ligand of [Cp(CO)2Mn=B-tBu]. Angew. Chem. Int. Ed. 52, 729–733 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant no. BR 1149/13-1).

Author information

Authors and Affiliations

Authors

Contributions

H.B. conceived and supervised the study. J.M., T.D., K.H. and W.C.E. performed the syntheses and spectroscopic studies. J.O.C.J.H., A.V. and A.K.P. performed the DFT computational studies. I.K. performed the EPR spectroscopic and cyclic voltammetry. T.K. performed the X-ray crystallographic measurements. R.D.D. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Holger Braunschweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 948 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 36 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunschweig, H., Dellermann, T., Dewhurst, R. et al. Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond. Nature Chem 5, 1025–1028 (2013). https://doi.org/10.1038/nchem.1778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing