Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computer-aided molecular design of solvents for accelerated reaction kinetics

Abstract

Solvents can significantly alter the rates and selectivity of liquid-phase organic reactions, often hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by improving rates and selectivities. To address this challenge, a systematic methodology is proposed that quickly identifies improved reaction solvents by combining quantum mechanical computations of the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) procedure. The approach allows the identification of a high-performance solvent within a very large set of possible molecules. The validity of our CAMD approach is demonstrated through application to a classical nucleophilic substitution reaction for the study of solvent effects, the Menschutkin reaction. The results were validated successfully by in situ kinetic experiments. A space of 1,341 solvents was explored in silico, but required quantum-mechanical calculations of the rate constant in only nine solvents, and uncovered a solvent that increases the rate constant by 40%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAMD algorithm illustrated with a Menschutkin reaction.
Figure 2: Comparison of QM-calculated and experimental rate constants in several solvents.
Figure 3: Time evolution of product concentration in different solvents.

Similar content being viewed by others

References

  1. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH, 2011).

    Google Scholar 

  2. Maki, B. E., Patterson, E. V., Cramer, C. J. & Scheidt, K. A. Impact of solvent polarity on N-heterocyclic carbene-catalyzed β-protonations of homoenolate equivalents. Org. Lett. 11, 3942–3945 (2009).

    Article  CAS  Google Scholar 

  3. Carlson, R. Designs for explorative experiments in organic synthetic chemistry. Chemom. Intell. Lab. Syst. 73, 151–166 (2004).

    Article  CAS  Google Scholar 

  4. Gani, R., Jiménez-González, C. & Constable, D. J. C. Method for selection of solvents for promotion of organic reactions. Comput. Chem. Eng. 29, 1661–1676 (2005).

    Article  CAS  Google Scholar 

  5. Otto, R. et al. Single solvent molecules can affect the dynamics of substitution reactions. Nature Chem. 4, 534–538 (2012).

    Article  CAS  Google Scholar 

  6. Jiménez-González, C. et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org. Process Res. Dev. 15, 900–911 (2011).

    Article  Google Scholar 

  7. Achenie, L. E. K., Gani, R. & Venkatasubramanian, V. (eds) Computer Aided Molecular Design: Theory and Practice (Elsevier, 2003).

    Google Scholar 

  8. Giovanoglou, A., Barlatier, J., Adjiman, C. S., Pistikopoulos, E. N. & Cordiner, J. L. Optimal solvent design for batch separation based on economic performance. AIChE J. 49, 3095–3109 (2003).

    Article  CAS  Google Scholar 

  9. Fredenslund, A., Jones, R. L. & Prausnitz, J. M. Group-contribution estimation of activity-coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975).

    Article  CAS  Google Scholar 

  10. Folić, M., Adjiman, C. S. & Pistikopoulos, E. N. Design of solvents for optimal reaction rate constants. AIChE J. 53, 1240–1256 (2007).

    Article  Google Scholar 

  11. Folić, M., Adjiman, C. S. & Pistikopoulos, E. N. Computer-aided solvent design for reactions: Maximizing product formation. Ind. Eng. Chem. Res. 47, 5190–5202 (2008).

    Article  Google Scholar 

  12. Carlson, R. & Carlson, J. E. Design and Optimization in Organic Synthesis (Elsevier, 2005).

    Google Scholar 

  13. Koppel, I. A. & Palm, V. A. in Advances in Linear Free Energy Relationships (eds Chapman, N. B. & Shorter, J.) Ch. 5 (Plenum Press, 1972).

    Google Scholar 

  14. Kamlet, M. J., Abboud, J. L. & Taft, R. W. The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977).

    Article  CAS  Google Scholar 

  15. Taft, R. W., Pienta, N. J., Kamlet, M. J. & Arnett, E. M. Linear solvation energy relationships. 7. Correlations between the solvent-donicity and acceptor-number scales and the solvatochromic parameters, π*, α, and β. J. Org. Chem. 46, 661–667 (1981).

    Article  CAS  Google Scholar 

  16. Taft, R. W., Abboud, J. L. M. & Kamlet, M. J. Linear solvation energy relationships. 12. The term in the solvatochromic equations. J. Am. Chem. Soc. 103, 1080–1086 (1981).

    Article  CAS  Google Scholar 

  17. Kamlet, M. J., Abboud, J-L. M., Abraham, M. H. & Taft, R. W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983).

    Article  CAS  Google Scholar 

  18. Taft, R. W., Abboud, J-L. M., Kamlet, M. J. & Abraham, M. H. Linear solvation energy relations. J. Solution Chem. 14, 153–186 (1985).

    Article  CAS  Google Scholar 

  19. Bini, R., Chiappe, C., Mestre, V. L., Pomelli, C. S. & Welton, T. A rationalization of the solvent effect on the Diels–Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org. Biomol. Chem. 6, 2522–2529 (2008).

    Article  CAS  Google Scholar 

  20. Gani, R., Gómez, P. A., Folić, M., Jiménez-González, C. & Constable, D. J. C. Solvents in organic synthesis: replacement and multi-step reaction systems. Comput. Chem. Eng. 32, 2420–2444 (2008).

    Article  CAS  Google Scholar 

  21. Stanescu, I. & Achenie, L. E. K. A theoretical study of solvent effects on Kolbe–Schmitt reaction kinetics. Chem. Eng. Sci. 61, 6199–6212 (2006).

    Article  CAS  Google Scholar 

  22. Menschutkin, N. A. Über die Affinitätskoeffizienten der Alkylhaloide und der Amine. Z. Physik. Chem. 6, 41–57 (1890).

    Article  Google Scholar 

  23. Abraham, M. H. & Grellier, P. L. Substitution at saturated carbon. Part XX. The effect of 39 solvents on the free energy of Et3N, EtI, and the Et3N–EtI transition state. Comparison with solvent effects on the equilibria Et3N + EtI ↔ Et4N+I and Et3N + EtI ↔ Et4N++ I. J. Chem. Soc. Perkin Trans. 2 1735–1741 (1976).

  24. Lassau, C. & Jungers, J. L'influence du solvant sur la réaction chimique. La quaternation des amines tertiaires par l'iodure de méthyle. Bull. Soc. Chim. Fr. 7, 2678–2685 (1968).

    Google Scholar 

  25. Castejon, H. & Wiberg, K. B. Solvent effects on methyl transfer reactions. 1. The Menshutkin reaction. J. Am. Chem. Soc. 121, 2139–2146 (1999).

    Article  CAS  Google Scholar 

  26. Acevedo, O. & Jorgensen, W. L. Exploring solvent effects upon the Menshutkin reaction using a polarizable force field. J. Phys. Chem. B 114, 8425–8430 (2010).

    Article  CAS  Google Scholar 

  27. Chuang, Y-Y., Cramer, C. J. & Truhlar, D. G. The interface of electronic structure and dynamics for reactions in solution. Int. J. Quantum Chem. 70, 887–896 (1998).

    Article  CAS  Google Scholar 

  28. Su, P., Wu, W., Kelly, C. P., Cramer, C. J. & Truhlar, D. G. VBSM: a solvation model based on valence bond theory. J. Phys. Chem. A 112, 12761–12768 (2008).

    Article  CAS  Google Scholar 

  29. Pearson, R. G., Langer, S. H., Williams, F. V. & McGuire, W. J. Mechanism of the reaction of α-haloketones with weakly basic nucleophilic reagents. J. Am. Chem. Soc. 74, 5130–5132 (1952).

    Article  Google Scholar 

  30. Barnard, P. W. C. & Smith, B. V. The Menschutkin reaction – a group experiment in a kinetic study. J. Chem. Educ. 58, 282–285 (1981).

    Article  CAS  Google Scholar 

  31. Forster, W. & Laird, R. M. The mechanism of alkylation reactions. 1. The effect of substituents on the reaction of phenacyl bromide with pyridine in methanol. J. Chem. Soc. Perkin Trans. 2 135–138 (1982).

  32. Hwang, J. U., Chung, J. J., Yoh, S. D. & Jee, J. G. Kinetics for the reaction of phenacyl bromide with pyridine in acetone under high pressure. Bull. Korean Chem. Soc. 4, 237–240 (1983).

    CAS  Google Scholar 

  33. Halvorsen, A. & Songstad, J. The reactivity of 2-bromo-1-phenylethanone (phenacyl bromide) toward nucleophilic species. J. Chem. Soc. Chem. Commun. 327–328 (1978).

  34. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    Article  CAS  Google Scholar 

  35. Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).

    Article  CAS  Google Scholar 

  36. Jalan, A., Ashcraft, R. W., West, R. H. & Green, W. H. Predicting solvation energies for kinetic modeling. Annu. Rep. Prog. Chem. C 106, 211–258 (2010).

    Article  CAS  Google Scholar 

  37. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  38. Poling, B. E., Prausnitz, J. M. & O'Connell, J. P. The Properties of Gases and Liquids (McGraw-Hill, 2000).

    Google Scholar 

  39. Marrero, J. & Gani, R. Group-contribution based estimation of pure component properties. Fluid Phase Equilibr. 183–184, 183–208 (2001).

    Article  Google Scholar 

  40. Winget, P., Dolney, D. M., Giesen, D. J., Cramer, C. J. & Truhlar, D. G. Minnesota Solvent Descriptor Database, http://comp.chem.umn.edu/solvation/mnsddb.pdf (2010).

    Google Scholar 

  41. Sheldon, T. J., Adjiman, C. S. & Cordiner, J. L. Pure component properties from group contribution: hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant. Fluid Phase Equilibr. 231, 27–37 (2005).

    Article  CAS  Google Scholar 

  42. Sheldon, T. J., Folić, M. & Adjiman, C. S. Solvent design using a quantum mechanical continuum solvation model. Ind. Eng. Chem. Res. 45, 1128–1140 (2006).

    Article  CAS  Google Scholar 

  43. Abraham, M. H., Doherty, R. M., Kamlet, M. J., Harris, J. M. & Taft, R. W. Linear solvation energy relationships. Part 37. An analysis of contributions of dipolarity–polarisability, nucleophilic assistance, electrophilic assistance, and cavity terms to solvent effects on t-butyl halide solvolysis rates. J. Chem. Soc. Perkin Trans. 2, 913–920 (1987).

  44. Abraham, M. H., Doherty, R. M., Kamlet, M. J., Harris, J. M. & Taft, R. W. Linear solvation energy relationships. Part 38. An analysis of the use of solvent parameters in the correlation of rate constants, with special reference to the solvolysis of t-butyl chloride. J. Chem. Soc. Perkin Trans. 2, 1097–1101 (1987).

  45. Kamlet, M. J., Abraham, M. H., Doherty, R. M. & Taft, R. W. Solubility properties in polymers and biological media. 4. Correlation of octanol/water partition coefficients with solvatochromic parameters. J. Am. Chem. Soc. 106, 464–466 (1984).

    Article  CAS  Google Scholar 

  46. Abraham, M. H. Scales of solute hydrogen bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993).

    Article  CAS  Google Scholar 

  47. Abraham, M. H. Application of solvation equations to chemical and biochemical processes. Pure Appl. Chem. 65, 2503–2512 (1993).

    Article  CAS  Google Scholar 

  48. Gao, C., Govind, R. & Tabak, H. H. Application of the group contribution method for predicting the toxicity of organic chemicals. Environ. Toxicol. Chem. 11, 631–636 (1992).

    Article  CAS  Google Scholar 

  49. Stefanis, E., Constantinou, L. & Panayiotou, C. A group-contribution method for predicting pure component properties of biochemical and safety interest. Ind. Eng. Chem. Res. 43, 6253–6261 (2004).

    Article  CAS  Google Scholar 

  50. Frisch, M. J. et al. Gaussian09 Revision A.1 (Gaussian Inc., Wallingford, Connecticut, 2009).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) (EP/E016340, EP/J003840/1, EP/J014958/1), funding from EPSRC and Syngenta Cooperative Awards in Science and Engineering (CASE) award, access to computational resources and support from the High Performance Computing Cluster at Imperial College London. We are thankful to D. Blackmond for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.S. contributed to the QM-CAMD methodological development and carried out all computations, with the help of P.G.K. and E.S. Z.G. performed and analysed all the experiments, with the help of P.H. for the NMR measurements. P.M.P. provided input for the interpretation of the kinetic data. A.A., A.G. and C.S.A. designed the methodology, supervised the project and prepared the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Claire S. Adjiman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struebing, H., Ganase, Z., Karamertzanis, P. et al. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nature Chem 5, 952–957 (2013). https://doi.org/10.1038/nchem.1755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing