Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water lubricates hydrogen-bonded molecular machines

Abstract

The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the ‘lubricant of life’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation cycle of the molecular shuttle, and the effect of adding different cosolvents on the shuttling rate.
Figure 2: Effect of added water on the rotational motion of a molecular machine.
Figure 3: Interaction of water with the molecular shuttle observed directly by steady-state and time-resolved infrared spectroscopy.
Figure 4: The presence of water speeds up the intercomponent motion of molecular machines by increasing the number of successful crossings of the transition-state barrier.

Similar content being viewed by others

References

  1. Cnossen, A. et al. Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J. Am. Chem. Soc. 134, 17613–17619 (2012).

    Article  CAS  Google Scholar 

  2. Hirose, K. Molecular brake systems controlled by light and heat. J. Inclusion Phenom. Macrocyclic Chem. 68, 1–24 (2010).

    Article  CAS  Google Scholar 

  3. Ray, D., Foy, J. T., Hughes, R. P. & Aprahamian, I. A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays. Nature Chem. 4, 757–762 (2012).

    Article  CAS  Google Scholar 

  4. Kubo, R., Toda, M. & Hashitsume, N. Statistical Physics II. Nonequilibrium Statistical Mechanics (Springer, 1985).

    Google Scholar 

  5. Braun, O. & Naumovets, A. Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79–158 (2006).

    Article  CAS  Google Scholar 

  6. Barron, L. D., Hecht, L. & Wilson, G. The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structures. Biochemistry 36, 13143–13147 (1997).

    Article  CAS  Google Scholar 

  7. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  8. Panman, M. R. et al. Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy. Science 328, 1255–1258 (2010).

    Article  CAS  Google Scholar 

  9. Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

    Article  CAS  Google Scholar 

  10. Gatti, F. G. et al. Photoisomerization of a rotaxane hydrogen bonding template: light-induced acceleration of a large amplitude rotational motion. Proc. Natl Acad. Sci. USA 100, 10–14 (2003).

    Article  CAS  Google Scholar 

  11. Horng, M., Gardecki, J. & Maroncelli, M. Rotational dynamics of coumarin 153: time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J. Phys. Chem. A 101, 1030–1047 (1997).

    Article  CAS  Google Scholar 

  12. Jagesar, D. C. et al. Photoinduced shuttling dynamics of rotaxanes in viscous polymer solutions. Adv. Funct. Mater. 19, 3440–3449 (2009).

    Article  CAS  Google Scholar 

  13. Henson, D. B. & Swenson, C. A. Infrared spectroscopic studies of N,N-disubstituted amides as models for the peptide bond in hydrogen bonded interactions with water molecules. J. Phys. Chem. 77, 2401–2406 (1973).

    Article  CAS  Google Scholar 

  14. Minzuno, K. et al. Studies of the interaction between alcohols and amides to identify the factors in the denaturation of globular proteins in halogenalcohol + water mixtures. J. Chem. Soc. Faraday Trans. 80, 879–894 (1984).

    Article  Google Scholar 

  15. Torii, H., Tatsumi, T., Kanazawa, K. & Tasumi, M. Effects of intermolecular hydrogen-bonding interactions on the amide I mode of N-methylacetamide: matrix-isolation infrared studies and ab initio molecular orbital calculations. J. Phys. Chem. B 102, 309–314 (1998).

    Article  CAS  Google Scholar 

  16. Wintgens, V., Valat, P. & Kossanyl, J. Spectroscopic properties of aromatic dicarboximides: part 1. –N–H and N-methyl-substituted naphthalimides. J. Chem. Soc. Faraday Trans. 90, 411–421 (1994).

    Article  CAS  Google Scholar 

  17. Jagesar, D. C., Hartl, F., Buma, W. J. & Brouwer, A. M. Infrared study of intercomponent interactions in a switchable hydrogen bonded rotaxane. Chem. Eur. J. 14, 1935–1946 (2008).

    Article  CAS  Google Scholar 

  18. Sundaralingam, M. & Sekharudu, Y. C. Water-inserted α-helical segments implicate reverse turns as folding intermediates. Science 244, 1333–1337 (1989).

    Article  CAS  Google Scholar 

  19. Nucci, N. V., Pometun, M. S. & Wand, A. J. Site-resolved measurement of water–protein interactions by solution NMR. Nature Struct. Mol. Biol. 18, 245–250 (2011).

    Article  CAS  Google Scholar 

  20. Xu, F. & Cross, T. A. Water: foldase activity in catalyzing polypeptide conformational rearrangements. Proc. Natl Acad. Sci. USA 96, 9057–9061 (1999).

    Article  CAS  Google Scholar 

  21. Kamlet, M., Abboud, J., Abraham, M. & Taft, R. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, β, and some methods for simplifying the generalized solvatochromic equations. J. Org. Chem. 48, 2877–2887 (1983).

    Article  CAS  Google Scholar 

  22. Mazur, K., Heisler, I. A. & Meech, S. R. Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides. J. Phys. Chem. B 114, 10684–10691 (2010).

    Article  CAS  Google Scholar 

  23. Mazur, K., Heisler, I. A. & Meech, S. R. Water dynamics at protein interfaces: ultrafast optical Kerr effect study. J. Phys. Chem. A 116, 2678–2685 (2012).

    Article  CAS  Google Scholar 

  24. Rønne, C. et al. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulations. J. Chem. Phys. 107, 5319–5331 (1997).

    Article  Google Scholar 

  25. Woutersen, S. & Bakker, H. J. Hydrogen bond in liquid water as a brownian oscillator. Phys. Rev. Lett. 83, 2077–2080 (1999).

    Article  CAS  Google Scholar 

  26. Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    Article  CAS  Google Scholar 

  27. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    Article  CAS  Google Scholar 

  28. Laage, D., Stirnemann, G., Sterpone, F., Rey, R. & Hynes, J. T. Reorientation and allied dynamics in water and aqueous solutions. Annu. Rev. Phys. Chem. 62, 395–416 (2011).

    Article  CAS  Google Scholar 

  29. Atkins, P. W. Physical Chemistry 851–853 (Oxford Univ. Press, 1978).

    Google Scholar 

  30. Morrone, J. A. & Tuckerman, M. E. Ab initio molecular dynamics study of proton mobility in liquid methanol. J. Chem. Phys. 117, 4403–4413 (2002).

    Article  CAS  Google Scholar 

  31. Guo, J. et al. Molecular structure of alcohol–water mixtures. Phys. Rev. Lett. 91, 157401 (2003).

    Article  Google Scholar 

  32. Günbaş, D. D., Zalewski, L. & Brouwer, A. M. Energy landscape of a hydrogen-bonded non-degenerate molecular shuttle. Chem. Commun. 46, 2061–2063 (2010).

    Article  Google Scholar 

  33. Fersht, A. Structure and Mechanism in Protein Science (W. H. Freeman, 1999).

    Google Scholar 

  34. Hunt, N. T., Kattner, L., Shanks, R. P. & Wynne, K. The dynamics of water–protein interaction studied by ultrafast optical Kerr-effect spectroscopy. J. Am. Chem. Soc. 129, 3168–3172 (2007).

    Article  CAS  Google Scholar 

  35. Altieri, A. et al. Electrochemically switchable hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 125, 8644–8654 (2003).

    Article  CAS  Google Scholar 

  36. Panman, M. et al. Time-resolved vibrational spectroscopy of a molecular shuttle. Phys. Chem. Chem. Phys. 6, 1865–1875 (2012).

    Article  Google Scholar 

  37. Gatti, F. G. et al. Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. J. Am. Chem. Soc. 123, 5983–5989 (2001).

    Article  CAS  Google Scholar 

  38. Bodis, P., Larsen, O. F. A. & Woutersen, S. Vibrational relaxation of the bending mode of HDO in liquid D2O. J. Phys. Chem. A 109, 5303–5306 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Bocokic for his advice on the preparation of the samples, P. Bodis for his assistance with the time-resolved measurements, J. M. Ernsting for assistance with the NMR experiments, W. van Aartsen and H. Beukers for the construction of the variable-temperature infrared cell, and H. J. Bakker for critically reading the manuscript and for valuable suggestions. This project was supported by the Stichting voor Fundamenteel Onderzoek der Materie which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Authors and Affiliations

Authors

Contributions

M.R.P. designed and performed the experiments and analysed the data. S.W. supervised the experiments and data analysis. B.H.B. synthesized the molecular shuttle and wheel-and-axle. E.R.K. synthesized the molecular shuttle. D.d.U. assisted with time-resolved experiments. J.A.J.G. assisted with the NMR experiments. W.J.B. helped with the interpretation. D.A.L. supervised the synthesis of the molecular shuttle. A.M.B. supervised the synthesis of the molecular shuttle and wheel-and-axle and helped with the interpretation. M.R.P. and S.W. co-wrote the manuscript.

Corresponding authors

Correspondence to Matthijs R. Panman, David A. Leigh or Sander Woutersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panman, M., Bakker, B., den Uyl, D. et al. Water lubricates hydrogen-bonded molecular machines. Nature Chem 5, 929–934 (2013). https://doi.org/10.1038/nchem.1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing