Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constructing monocrystalline covalent organic networks by polymerization

Abstract

An emerging strategy for making ordered materials is modular construction, which connects preformed molecular subunits to neighbours through interactions of properly selected reactive sites. This strategy has yielded remarkable materials, including metal–organic frameworks joined by coordinative bonds, supramolecular networks linked by strong non-covalent interactions, and covalent organic frameworks in which atoms of carbon and other light elements are bonded covalently. However, the strategy has not yet produced covalently bonded organic materials in the form of large single crystals. Here we show that such materials can result from reversible self-addition polymerizations of suitably designed monomers. In particular, monomers with four tetrahedrally oriented nitroso groups polymerize to form diamondoid azodioxy networks that can be fully characterized by single-crystal X-ray diffraction. This work forges a strong new link between polymer science and supramolecular chemistry by showing how predictably ordered covalent or non-covalent structures can both be built using a single modular strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of monocrystalline covalent organic networks by reversible self-addition polymerizations.
Figure 2: Photographs of large single crystals of covalent nitroso polymer networks NPN-1, NPN-2 and NPN-3.
Figure 3: Representations of the structures of crystals of covalent organic networks NPN-1, NPN-2 and NPN-3.
Figure 4: Molecular weight and dispersity of NPN-1, measured using optical microscopy to analyse single crystals.

Similar content being viewed by others

References

  1. Stock, N. & Biswas, S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    Article  CAS  Google Scholar 

  2. Meek, S. T., Greathouse, J. A. & Allendorf, M. D. Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011).

    Article  CAS  Google Scholar 

  3. Wuest, J. D. Engineering crystals by the strategy of molecular tectonics. Chem. Commun. 41, 5830–5837 (2005).

    Article  Google Scholar 

  4. Jones, J. T. A. et al. Modular and predictable assembly of porous organic crystals. Nature 474, 367–371 (2011).

    Article  CAS  Google Scholar 

  5. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  6. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  7. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  8. Bunck, D. N. & Dichtel, W. R. Internal functionalization of three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 51, 1885–1889 (2012).

    Article  CAS  Google Scholar 

  9. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    Article  CAS  Google Scholar 

  10. Lanni, L. M., Tilford, R. W., Bharathy, M. & Lavigne, J. J. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133, 13975–13983 (2011).

    Article  CAS  Google Scholar 

  11. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  12. Gowenlock, B. G., Maidment, M. J., Orrell, K. G., Prokeš, I. & Roberts, J. R. Nitrosoanisoles. Sensitive indicators of dimerisation criteria for C-nitrosoarenes. J. Chem. Soc. Perkin Trans. 2, 1904–1911 (2001).

    Google Scholar 

  13. Fletcher, D. A., Gowenlock, B. G. & Orrell, K. G. Structural investigations of C-nitrosobenzenes. Part 2.1 NMR studies of monomer–dimer equilibria including restricted nitroso group rotation in monomers. J. Chem. Soc. Perkin Trans. 2, 797–804 (1998).

    Article  Google Scholar 

  14. Orrell, K. G., Šik, V. & Stephenson, D. Study of the monomer–dimer equilibrium of nitrosobenzene using multinuclear one- and two-dimensional NMR techniques. Magn. Res. Chem. 25, 1007–1011 (1987).

    Article  CAS  Google Scholar 

  15. Azoulay, M. & Fischer, E. Low-temperature proton nuclear magnetic resonance and ultraviolet absorption spectra and photochemistry of the system nitrosobenzene–azodioxybenzene and its methyl derivatives. J. Chem. Soc. Perkin Trans. 2, 637–642 (1982).

    Article  Google Scholar 

  16. Fletcher, D. A. et al. Structural investigations of C-nitrosobenzenes. Part 3. Solid-state and solution 13C NMR studies, and crystal structure of E-(4-ClC6H4NO)2 . J. Chem. Res. (S), 1999, 202–203 (1999).

    Article  Google Scholar 

  17. Hoffmann, R., Gleiter, R. & Mallory, F. B. Non-least-motion potential surfaces. Dimerization of methylenes and nitroso compounds. J. Am. Chem. Soc. 92, 1460–1466 (1970).

    Article  CAS  Google Scholar 

  18. Lüttke, W., Skancke, P. N. & Traetteberg, M. On the dimerization process of nitroso compounds. Theor. Chim. Acta 87, 321–333 (1994).

    Article  Google Scholar 

  19. Gowenlock, B. G. & Richter-Addo, G. B. Dinitroso and polynitroso compounds. Chem. Soc. Rev. 34, 797–809 (2005).

    Article  CAS  Google Scholar 

  20. Hacker, N. P. Investigation of the polymerization of 1,4-dinitrosobenzene by low-temperature infrared and UV absorption spectroscopy. Macromolecules 26, 5937–5942 (1993).

    Article  CAS  Google Scholar 

  21. Fetizon, M. & Golfier, M. Oxydation sélective des alcools par le carbonate d'argent. C. R. Acad. Sci. Ser. C 267, 900–903 (1968).

    CAS  Google Scholar 

  22. Maassen, J. A. & de Boer, T. J. Silver carbonate, a convenient reagent for preparing C-nitroso compounds from hydroxylamines. Recl. Trav. Chim. Pays-Bas 90, 373–376 (1971).

    Article  CAS  Google Scholar 

  23. Beaudoin, D. & Wuest, J. D. Synthesis of N-arylhydroxylamines by Pd-catalyzed coupling. Tetrahedron Lett. 52, 2221–2223 (2011).

    Article  CAS  Google Scholar 

  24. Spek, A. L. in PLATON, A Multipurpose Crystallographic Tool (Utrecht University, 2001).

  25. van der Sluis, P. & Spek, A. L. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr. A46, 194–201 (1990).

    Article  CAS  Google Scholar 

  26. Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2011).

    Article  CAS  Google Scholar 

  27. Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2012).

    Article  CAS  Google Scholar 

  28. Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada, the Ministère de l’Éducation du Québec, the Canada Foundation for Innovation, the Canada Research Chairs Program and Université de Montréal for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.B. synthesized and crystallized all new compounds, and he also carried out all analyses except for the crystallographic studies. T.M. collected, processed and refined all crystallographic data. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to James D. Wuest.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1780 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 14 kb)

Supplementary information

Crystallographic data for compound NPN1. (CIF 13 kb)

Supplementary information

Crystallographic data for compound NPN2. (CIF 13 kb)

Supplementary information

Crystallographic data for compound NPN3. (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudoin, D., Maris, T. & Wuest, J. Constructing monocrystalline covalent organic networks by polymerization. Nature Chem 5, 830–834 (2013). https://doi.org/10.1038/nchem.1730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing