Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules

Abstract

Carbohydrates and natural products serve essential roles in nature, and also provide core scaffolds for pharmaceutical agents and vaccines. However, the inherent complexity of these molecules imposes significant synthetic hurdles for their selective functionalization and derivatization. Nature has, in part, addressed these issues by employing enzymes that are able to orient and activate substrates within a chiral pocket, which increases dramatically both the rate and selectivity of organic transformations. In this article we show that similar proximity effects can be utilized in the context of synthetic catalysts to achieve general and predictable site-selective functionalization of complex molecules. Unlike enzymes, our catalysts apply a single reversible covalent bond to recognize and bind to specific functional group displays within substrates. By combining this unique binding selectivity and asymmetric catalysis, we are able to modify the less reactive axial positions within monosaccharides and natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of selectively modified polyols in naturally occurring compounds and approaches to their site-selective functionalization
Figure 2: The site-selective modification of both the C2 and C4 hydroxyls of Helicid.
Figure 3: Expansion of scaffolding-catalysed electrophile transfer beyond monosaccharides.

Similar content being viewed by others

References

  1. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    CAS  Google Scholar 

  2. Butler, M. S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25, 475–516 (2008).

    CAS  PubMed  Google Scholar 

  3. van Kooyk, Y. & Rabinovich, G. A. Protein–glycan interactions in the control of innate and adaptive immune responses. Nature Immunol. 9, 593–601 (2008).

    CAS  Google Scholar 

  4. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    CAS  PubMed  Google Scholar 

  5. Weymouth-Wilson, A. C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110 (1997).

    CAS  PubMed  Google Scholar 

  6. La Ferla, B. et al. Natural glycoconjugates with antitumor activity. Nat. Prod. Rep. 28, 630–648 (2011).

    CAS  PubMed  Google Scholar 

  7. Seeberger, P. H. & Werz, D. B. Automated synthesis of oligosaccharides as a basis for drug discovery. Nature Rev. Drug. Discov. 4, 751–763 (2005).

    CAS  Google Scholar 

  8. Zhu, X. & Schmidt, R. R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    CAS  Google Scholar 

  9. Hsu, C. H., Hung, S. C., Wu, C. Y. & Wong, C. H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50, 11872–11923 (2011).

    CAS  Google Scholar 

  10. Walczak, M. A. & Danishefsky, S. J. Solving the convergence problem in the synthesis of triantennary N-glycan relevant to prostate-specific membrane antigen (PSMA). J. Am. Chem. Soc. 134, 16430–16433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Breslow, R. et al. Remote oxidation of steroids by photolysis of attached benzophenone groups. J. Am. Chem. Soc. 95, 3251–3262 (1973).

    CAS  PubMed  Google Scholar 

  12. Breslow, R. et al. Selective halogenation of steroids using attached aryl iodide templates. J. Am. Chem. Soc. 99, 905–915 (1977).

    CAS  PubMed  Google Scholar 

  13. Breslow, R. & Heyer, D. Catalytic multiple template-directed steroid chlorinations. J. Am. Chem. Soc. 104, 2045–2046 (1982).

    CAS  Google Scholar 

  14. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    CAS  Google Scholar 

  15. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    CAS  PubMed  Google Scholar 

  16. Yoshida, K., Furuta, T. & Kawabata, T. Perfectly regioselective acylation of a cardiac glycoside, digitoxin, via catalytic amplification of the intrinsic reactivity. Tetrahedron Lett. 51, 4830–4832 (2010).

    CAS  Google Scholar 

  17. Snyder, S. A., Gollner, A. & Chiriac, M. I. Regioselective reactions for programmable resveratrol oligomer synthesis. Nature 474, 461–466 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruckl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    CAS  PubMed  Google Scholar 

  19. Pathak, T. P. & Miller, S. J. Site-selective bromination of vancomycin. J. Am. Chem. Soc. 134, 6120–6123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilcock, B. C. et al. Electronic tuning of site-selectivity. Nature Chem. 4, 996–1003 (2012).

    CAS  Google Scholar 

  21. Fowler, B. S., Laemmerhold, K. M. & Miller, S. J. Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J. Am. Chem. Soc. 134, 9755–9761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beale, T. M. & Taylor, M. S. Synthesis of cardiac glycoside analogs by catalyst-controlled, regioselective glycosylation of digitoxin. Org. Lett. 15, 1358–1361 (2013).

    CAS  PubMed  Google Scholar 

  23. Pathak, T. P. & Miller, S. J. Chemical tailoring of teicoplanin with site-selective reactions. J. Am. Chem. Soc. 135, 8415–8422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, D. & Taylor, M. S. Catalyst-controlled regioselective reactions of carbohydrate derivatives. Synthesis 44, 3421–3431 (2012).

    CAS  Google Scholar 

  25. Kawabata, T., Muramatsu, W., Nishio, T., Shibata, T. & Schedel, H. A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J. Am. Chem. Soc. 129, 12890–12895 (2007).

    CAS  PubMed  Google Scholar 

  26. Kawabata, T. & Furuta, T. Nonenzymatic regioselective acylation of carbohydrates. Chem. Lett. 38, 640–647 (2009).

    CAS  Google Scholar 

  27. Griswold, K. S. & Miller, S. J. A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron 59, 8869–8875 (2003).

    CAS  Google Scholar 

  28. Gouliaras, C., Lee, D., Chan, L. & Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc. 133, 13926–13929 (2011).

    CAS  PubMed  Google Scholar 

  29. Chan, L. & Taylor, M. S. Regioselective alkylation of carbohydrate derivatives catalyzed by a diarylborinic acid derivative. Org. Lett. 13, 3090–3093 (2011).

    CAS  PubMed  Google Scholar 

  30. Lee, D. & Taylor, M. S. Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. J. Am. Chem. Soc. 133, 3724–3727 (2011).

    CAS  PubMed  Google Scholar 

  31. Lee, D., Williamson, C. L., Chan, L. & Taylor, M. S. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J. Am. Chem. Soc. 134, 8260–8267 (2012).

    CAS  PubMed  Google Scholar 

  32. Hu, G. & Vasella, A. Regioselective benzoylation of 6-O-protected and 4,6-O-diprotected hexopyranosides as promoted by chiral and achiral ditertiary 1,2-diamines. Helv. Chim. Acta 85, 4369–4391 (2002).

    CAS  Google Scholar 

  33. Page, M. I. & Jencks, W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and chelate effect. Proc. Natl Acad. Sci. USA 68, 1678–1683 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lobsanov, Y. D. et al. Structure of Kre2p/Mnt1p: a yeast α 1,2-mannosyltransferase involved in mannoprotein biosynthesis. J. Biol. Chem. 279, 17921–17931 (2004).

    CAS  PubMed  Google Scholar 

  35. Sun, X., Worthy, A. D. & Tan, K. L. Scaffolding catalysts: highly enantioselective desymmetrization reactions. Angew. Chem. Int. Ed. 50, 8167–8171 (2011).

    CAS  Google Scholar 

  36. Worthy, A. D., Sun, X. & Tan, K. L. Site-selective catalysis: toward a regiodivergent resolution of 1,2-diols. J. Am. Chem. Soc. 134, 7321–7324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Y., Rodrigo, J., Hoveyda, A. H. & Snapper, M. L. Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule. Nature 443, 67–70 (2006).

    CAS  PubMed  Google Scholar 

  38. Isobe, T., Fukuda, K., Araki, Y. & Ishikawa, T. Modified guanidines as chiral superbases: the first example of asymmetric silylation of secondary alcohols. Chem. Commun. 7, 243–244 (2001).

    Google Scholar 

  39. Weickgenannt, A., Mewald, M. & Oestreich, M. Asymmetric Si–O coupling of alcohols. Org. Biomol. Chem. 8, 1497–1504 (2010).

    CAS  PubMed  Google Scholar 

  40. Zhao, Y., Mitra, A. W., Hoveyda, A. H. & Snapper, M. L. Kinetic resolution of 1,2-diols through highly site- and enantioselective catalytic silylation. Angew. Chem. Int. Ed. 46, 8471–8474 (2007).

    CAS  Google Scholar 

  41. Rodrigo, J. M., Zhao, Y., Hoveyda, A. H. & Snapper, M. L. Regiodivergent reactions through catalytic enantioselective silylation of chiral diols. Synthesis of sapinofuranone A. Org. Lett. 13, 3778–3781 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheppard, C. I., Taylor, J. L. & Wiskur, S. L. Silylation-based kinetic resolution of monofunctional secondary alcohols. Org. Lett. 13, 3794–3797 (2011).

    CAS  PubMed  Google Scholar 

  43. Weickgenannt, A., Mohr, J. & Oestreich, M. Catalytic enantioselective dehydrogenative Si–O coupling of oxime ether-functionalized alcohols. Tetrahedron 68, 3468–3479 (2012).

    CAS  Google Scholar 

  44. Pascal, R. Catalysis through induced intramolecularity: what can be learned by mimicking enzymes with carbonyl compounds that covalently bind substrates? Eur. J. Org. Chem., 10, 1813–1824 (2003).

    Google Scholar 

  45. Tan, K. L. Induced intramolecularity: an effective strategy in catalysis. ACS Cat. 1, 877–886 (2011).

    CAS  Google Scholar 

  46. Guimond, N., MacDonald, M. J., Lemieux, V. & Beauchemin, A. M. Catalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed Cope-type hydroamination lead to the discovery of a more efficient tethering catalyst. J. Am. Chem. Soc. 134, 16571–16577 (2012).

    CAS  PubMed  Google Scholar 

  47. MacDonald, M. J., Hesp, C. R., Schipper, D. J., Pesant, M. & Beauchemin, A. M. Highly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering catalysts. Chem. Eur. J. 19, 2597–2601 (2013).

    CAS  PubMed  Google Scholar 

  48. Somoza, A. Protecting groups for RNA synthesis: an increasing need for selective preparative methods. Chem. Soc. Rev. 37, 2668–2675 (2008).

    CAS  PubMed  Google Scholar 

  49. Repke, K. R. H. & Megges, R. Status and prospect of current inotropic agents. Expert Opin. Ther. Pat. 7, 1297–1306 (1997).

    CAS  Google Scholar 

  50. Thomas, C. M., Hothersall, J., Willis, C. L. & Simpson, T. J. Resistance to and synthesis of the antibiotic mupirocin. Nature Rev. Microbiol. 8, 281–289 (2010).

    CAS  Google Scholar 

  51. Silvian, L. F., Wang, J. & Steitz, T. A. Insights into editing from an Ile-tRNA synthetase structure with tRNA(Ile) and mupirocin. Science 285, 1074–1077 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (RO1-GM087581), National Science Foundation Career Award (CHE-1150393) and Boston College. X.S. is an AstraZeneca Graduate Fellow and K.L.T. is an Alfred P. Sloan fellow. We thank P. Ozkal for early experimental assistance; E. Weerapana, J. Morken and A. Hoveyda for discussions; R. Jain, H. Pham and Novartis for providing spectra of α-acetyl digoxin.

Author information

Authors and Affiliations

Authors

Contributions

K.L.T. and X.S. were involved in the design and discovery of the catalysts; X.S. was responsible for the data obtained with methyl-α-D-mannose, arabinose, galactose and digoxin; H.L. was responsible for the data obtained with methyl-α-L-rhamnose and mupirocin; S.L. was responsible for the data obtained with uridine; K.L.T. conceived and directed the investigation and wrote the manuscript.

Corresponding author

Correspondence to Kian L. Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Lee, H., Lee, S. et al. Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nature Chem 5, 790–795 (2013). https://doi.org/10.1038/nchem.1726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing