Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Möbius aromaticity and antiaromaticity in expanded porphyrins

Abstract

Aromaticity is a key concept in chemistry, dating back to Faraday's discovery of benzene in 1825 and Kekulé's famous alternating-double-bond structure of 1865. In 1858, the Möbius strip was discovered by Möbius and Listing. The Hückel rules for predicting aromaticity, stating that [4n + 2] π electrons result in an aromatic system, work for planar molecules. Although molecules with Möbius geometry are not found in nature, chemists have tried to synthesize such molecules since the first theoretical prediction by Heilbronner in 1964 and the prediction of Möbius aromaticity for suitable compounds with [4n] π electrons. However, Möbius-aromatic molecules have proved difficult to synthesize, and sometimes even to identify. Here we summarize recent contributions of several research groups that have succeeded in synthesizing Möbius-type molecules. The results of this survey lead us to suggest that the generation of Möbius topologies in expanded porphyrins is easier than hitherto appreciated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the topologies of π-conjugated electron systems.
Figure 2: The first reported Möbius-aromatic molecule, (CH)9+.
Figure 3: Möbius-aromatic [n]annulenes.
Figure 4: Strategy to stabilize the Möbius structure of annulenes.
Figure 5: Syntheses of Möbius-type expanded porphyrin molecules.
Figure 6: The metal-coordinated Möbius-aromatic expanded porphyrins.
Figure 7: Hückel and Möbius topologies of [28]hexaphyrins.

References

  1. James, I. M. (ed.) History of Topology 909–924 (North-Holland, 1999).

    Google Scholar 

  2. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Garratt, P. J. Aromaticity 1–19 (Wiley, 1986).

  4. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 5, 1923–1928 (1964).

    Article  Google Scholar 

  5. Zimmerman, H. E. On molecular orbital correlation diagrams, the occurrence of Möbius systems in cyclization reactions, and factors controlling ground- and excited-states reactions. I. J. Am. Chem. Soc. 88, 1564–1565 (1966).

    Article  CAS  Google Scholar 

  6. Walba, D. M., Richards, M. & Haltiwanger, R. C. Total synthesis of the first molecular Möbius strip. J. Am. Chem. Soc. 104, 3219–3221 (1982).

    Article  CAS  Google Scholar 

  7. von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H. & van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    Article  Google Scholar 

  8. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & von Ragué Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Mauksch, M., Gogonea, V., Jiao, H. & von Ragué Schleyer, P. Monocyclic (CH)9+ – a Heilbronner Möbius aromatic system revealed. Angew. Chem. Int. Ed. 37, 2395–2397 (1998).

    Article  CAS  Google Scholar 

  10. Barborak, J. C., Su, T. M., von Ragué Schleyer, P., Boche, G. & Schneider, G. Thermal bicyclo[6.1.0]nonatrienyl chloride-dihydroindenyl chloride rearrangement. J. Am. Chem. Soc. 93, 279–281 (1971).

    Article  Google Scholar 

  11. van Tamelen, E. E. & Burkoth, T. L. Cyclodecapentaene. J. Am. Chem. Soc. 89, 151–152 (1967).

    Article  CAS  Google Scholar 

  12. Masamune, S., Chin, C. G., Hojo, K. & Seidner, R. T. Bicyclo[6.2.0]deca-2,4,6,9-tetraene. J. Am. Chem. Soc. 89, 4804–4805 (1967).

    Article  CAS  Google Scholar 

  13. Farnell, L., Kao, J., Radom, L. & Schaefer, H. F. Structures and stabilities of isomeric [10]annulenes. J. Am. Chem. Soc. 103, 2147–2151 (1981).

    Article  CAS  Google Scholar 

  14. von Ragué Schleyer, P., Jiao, H., Sulzbach, H. M. & Schaefer, H. F. Highly aromatic planar all-cis-[10]annulene derivatives. J. Am. Chem. Soc. 118, 2093–2094 (1996).

    Article  Google Scholar 

  15. Sulzbach, H. M., Schaefer, H. F., Klopper, W. & Luthi, H.-P. Exploring the boundary between aromatic and olefinic character: bad news for second-order perturbation theory and density functional schemes. J. Am. Chem. Soc. 118, 3519–3520 (1996).

    Article  CAS  Google Scholar 

  16. King, R. A., Crawford, T. D., Stanton, J. F. & Schaefer, H. F. Conformations of [10]annulene: more bad news for density functional theory and second-order perturbation theory. J. Am. Chem. Soc. 121, 10788–10793 (1999).

    Article  CAS  Google Scholar 

  17. Martín-Santamaría, S., Lavan, B. & Rzepa, H. S. Hückel and Möbius aromaticity and trimerous transition state behaviour in the pericyclic reactions of [10], [14], [16] and [18]annulenes. J. Chem. Soc. Perkin Trans. 2 1415–1417 (2000).

  18. Price, D. R. & Stanton, J. F. Computational study of [10]annulene NMR spectra. Org. Lett. 4, 2809–2811 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Castro, C., Karney, W. L., McShane, C. M. & Pemberton, R. P. [10]Annulene: bond shifting and conformational mechanisms for automerization. J. Org. Chem. 71, 3001–3006 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Sondheimer, F. & Gaoni, Y. Unsaturated macrocyclic compounds. XV. cyclotetradecaheptaene. J. Am. Chem. Soc. 82, 5765–5766 (1960).

    Article  CAS  Google Scholar 

  21. Oth, J. F. M. Conformational mobility and fast bond shift in the annulenes. Pure Appl. Chem. 25, 573–622 (1971).

    Article  CAS  Google Scholar 

  22. Baumann, H. & Bünzli, J. Photoelectron spectrum of [14]annulene. J. Chem. Soc. Faraday Trans. 94, 2695–2699 (1998).

    Article  CAS  Google Scholar 

  23. Jug, K. & Fasold, E. Structure and aromaticity of 14-annulene and 18-annulene. J. Am. Chem. Soc. 109, 2263–2265 (1987).

    Article  CAS  Google Scholar 

  24. Chiang, C. C. & Paul, I. Crystal and molecular structure of [14]annulene. C. J. Am. Chem. Soc. 94, 4741–4743 (1972).

    Article  CAS  Google Scholar 

  25. Vogel, E., Engels, H.-W., Huber, W., Lex, J. & Müllen, K. Octalene–[14]annulene conversion: 1,8-dimethyl[14]annulene. J. Am. Chem. Soc. 104, 3729–3731 (1982).

    Article  CAS  Google Scholar 

  26. Baumann, H. & Oth, J. F. M. The low-temperature UV/VIS absorption spectrum of [14]annulene. Helv. Chim. Acta 78, 679–692 (1995).

    Article  CAS  Google Scholar 

  27. Wannere, C. S., Sattelmeyer, K. W., Schaefer, H. F. & von Ragué Schleyer, P. Aromaticity: the alternating C-C bond length structures of [14]-, [18]-, and [22]annulene. Angew. Chem. Int. Ed. 43, 4200–4206 (2004).

    Article  CAS  Google Scholar 

  28. Rzepa, H. S. A double-twist Möbius-aromatic conformation of [14]annulene. Org. Lett. 7, 4637–4639 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Martin-Santamaria, S. & Rzepa, H. S. Double aromaticity and anti-aromaticity in small carbon rings. Chem. Commun. 1503–1504 (2000).

  30. Moll, J. F., Pemberton, R. P., Gutierrez, M. G., Castro, C. & Karney, W. L. Configuration change in [14]annulene requires Möbius antiaromatic bond shifting. J. Am. Chem. Soc. 129, 274–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Bergman, J., Hirshfeld, F. L., Rabinovich, D. & Schmidt, G. M. J. The crystal structure of [18]annulene, I. X-ray study. Acta Crystallogr. 19, 227–234 (1965).

    Article  Google Scholar 

  32. Baumann, H. & Oth, J. F. M. The low-temperature UV/VIS absorption spectrum of [18]annulene. Helv. Chim. Acta 65, 1885–1893 (1982).

    Article  CAS  Google Scholar 

  33. Haddon, R. C. [18]Annulene. Chem. Phys. Lett. 70, 210–212 (1980).

    Article  CAS  Google Scholar 

  34. Gorter, S., Rutten-Keulemans, E., Krever, M., Romers, C. & Cruickshank, D. W. J. [18]Annulene, C18H18, structure, disorder and Hückel's 4n + 2 rule. Acta Crystallogr. B 51, 1036–1045 (1995).

    Article  Google Scholar 

  35. Jiao, H. & von Ragué Schleyer, P. Is kekulene really superaromatic? Angew. Chem. Int. Ed. Engl. 35, 2383–2386 (1996).

    Article  Google Scholar 

  36. Choi, C. H., Kertesz, M. & Karpfen, A. Do localized structures of [14]- and [18]annulenes exist? J. Am. Chem. Soc. 119, 11994–11995 (1997).

    Article  CAS  Google Scholar 

  37. Buhl, M. & von Ragué Schleyer, P. Application and evaluation of ab initio chemical shift calculations for boranes and carboranes. How reliable are “accurate” experimental structures? J. Am. Chem. Soc. 114, 477–491 (1992).

    Article  Google Scholar 

  38. Schreiner, P. R., Fokin, A. A., Pascal, R. A. Jr & de Meijere, A. Many density functional theory approaches fail to give reliable large hydrocarbon isomer energy differences. Org. Lett. 8, 3635–3638 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Oth, J. F. M., Rottele, H. & Schroder, G. [12]Annulene. Tetrahedron Lett. 11, 61–66 (1970).

    Article  Google Scholar 

  40. Castro, C., Isborn, C. M., Karney, W. L., Mauksch, M. & von RaguéSchleyer, P. Aromaticity with a twist: Möbius [4n]annulene. Org. Lett. 4, 3431–3434 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Castro, C., Karney, W. L., Vu, C. M. H., Burkhardt, S. E. & Valencia, M. A. Computational evaluation of the evidence for tri-trans-[12]annulene. J. Org. Chem. 70, 3602–3609 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Castro, C., Karney, W. L., Valencia, M. A., Vu, C. M. H. & Pemberton, R. P. Möbius aromaticity in [12]annulene: cis-trans isomerization via twist-coupled bond shifting. J. Am. Chem. Soc. 127, 9704–9705 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Braten, M. N., Castro, C., Herges, R., Köhler, F. & Karney, W. L. The [12]annulene global minimum. J. Org. Chem. 73, 1532–1535 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Sondheimer, F. & Gaoni, Y. Unsaturated macrocyclic compounds. XXIV. Synthesis of four completely conjugated sixteen-membered ring cyclic systems. J. Am. Chem. Soc. 83, 4863–4864 (1961).

    Article  CAS  Google Scholar 

  45. Johnson, S. M. & Paul, I. C. Crystal and molecular structure of [16]annulene. J. Am. Chem. Soc. 90, 6555–6556 (1968).

    Article  CAS  Google Scholar 

  46. Calder, I. C., Gaoni, Y. & Sondheimer, F. Unsaturated macrocyclic compounds. LIX. Synthesis of four dehydro[16]annulenes and [16]annulene. J. Am. Chem. Soc. 90, 4946–4954 (1968).

    Article  CAS  Google Scholar 

  47. Pemberton, R. P., McShane, C. M., Castro, C. & Karney, W. L. Dynamic processes in [16]annulene: Möbius bond-shifting routes to configuration change. J. Am. Chem. Soc. 128, 16692–16700 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Rzepa, H. S. Möbius aromaticity and delocalization. Chem. Rev. 105, 3697–3715 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kennedy, R. D., Lloyd, D. & McNab, H. Annelens, 1980–2000 J. Chem. Soc. Perkin Trans. 1 1601–1621 (2002).

  50. Sondheimer, F. The annulenes. Acc. Chem. Res. 5, 81–91 (1971).

    Article  Google Scholar 

  51. Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ajami, D. et al. Synthesis and properties of the first Möbius annulenes. Chem. Eur. J. 12, 5434–5445 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Castro, C. et al. Investigation of a putative Möbius aromatic hydrocarbon. The effect of benzannelation on Möbius [4n]annulene aromaticity. J. Am. Chem. Soc. 127, 2425–2432 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bauer, V. J. et al. Sapphyrins: novel aromatic pentapyrrolic macrocycles. J. Am. Chem. Soc. 105, 6429–6436 (1983).

    Article  CAS  Google Scholar 

  56. Sessler, J. L., Weghorn, S. J., Lynch, V. & Johnson, M. R. Turcasarin, the largest expanded porphyrin to date. Angew. Chem. Int. Ed. Engl. 33, 1509–1512 (1994).

    Article  Google Scholar 

  57. Sessler, J. L. & Weghorn, S. J. Expanded, Contracted and Isomeric Porphyrins 369–371 (Pergamon, 1997).

  58. Bröring, M. et al. Octaphyrin-(1.0.1.0.1.0.1.0). Angew. Chem. Int. Ed. Engl. 34, 2515–2517 (1995).

    Article  Google Scholar 

  59. Setsune, J.-i., Katakami, Y. & Iizuna, N. [48]Dodecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0) and [64]hexadecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0): the largest cyclopolypyrroles. J. Am. Chem. Soc. 121, 8957–8958 (1999).

    Article  CAS  Google Scholar 

  60. Setsune, J.-I. & Maeda, S. Bis(azafulvene) as a versatile building block for giant cyclopolypyrroles: X-ray crystal structure of [64]hexadecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0). J. Am. Chem. Soc. 122, 12405–12406 (2000).

    Article  CAS  Google Scholar 

  61. Shin, J.-Y., Furuta, H., Yoza, K., Igarashi, S. & Osuka, A. Meso-aryl-substituted expanded porphyrins. J. Am. Chem. Soc. 123, 7190–7191 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sprutta, N. & Latos-Grażyński, L. Figure-eight tetrathiaoctaphyrin and dihydrotetrathiaoctaphyrin. Chem. Eur. J. 7, 5099–5112 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Latos-Grażyński, L. Bimetallic figure-eight octaphyrins split into four-pyrrolic macrocycles. Angew. Chem. Int. Ed. 43, 5124–5128 (2004).

    Article  CAS  Google Scholar 

  64. Stępień, M ., Latos-Grażyński, L., Sprutta, N., Chwalisz, P. & Szterenberg, L. Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. Angew. Chem. Int. Ed. 46, 7869–7873 (2007).

    Article  CAS  Google Scholar 

  65. Pacholska-Dudziak, E. et al. Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. J. Am. Chem. Soc. 130, 6182–6195 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka, Y. et al. Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. Angew. Chem. Int. Ed. 47, 681–684 (2008).

    Article  CAS  Google Scholar 

  67. Park, J. K. et al. Möbius aromaticity in N-fused [24]pentaphyrin upon Rh(I) metalation. J. Am. Chem. Soc. 130, 1824–1825 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Sankar, J. et al. Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). J. Am. Chem. Soc. 130, 13568–13579 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ahn, T. K. et al. Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1). J. Am. Chem. Soc. 127, 12856–12861 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Rzepa, H. S. Lemniscular hexaphyrins as examples of aromatic and antiaromatic double-twist Möbius molecules. Org. Lett. 10, 949–952 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Rappaport, S. M. & Rzepa, H. S. Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. J. Am. Chem. Soc. 130, 7613–7619 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Allan, C. S. M. & Rzepa, H. S. A computational investigation of the structure of polythiocyanogen. Dalton Trans. 6925–6932 (2008).

  73. Allan, C. S. M. & Rzepa, H. S. Chiral aromaticities. AIM and ELF critical point and NICS magnetic analyses of Möbius-type aromaticity and homoaromaticity in lemniscular annulenes and hexaphyrins. J. Org. Chem. 73, 6615–6622 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Allan, C. S. M. & Rzepa, H. S. Chiral aromaticities. A topological exploration of Möbius homoaromaticity. J. Chem. Theory Comput. 4, 1841–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Saito, S. et al. Protonation-triggered conformational changes to Möbius aromatic [32]heptaphyrins(1.1.1.1.1.1.1). Angew. Chem. Int. Ed. 47, 9657–9660 (2008).

    Article  CAS  Google Scholar 

  76. Kui, S. C. F., Huang, J.-S., Sun, R. W., Zhu, N. & Che, C.-M. Self-assembly of a highly stable, topologically interesting metallamacrocycle by bridging gold(I) ions with pyridyl-2,6-diphenyl2− and diphosphanes. Angew. Chem. Int. Ed. 45, 4663–4666 (2006).

    Article  CAS  Google Scholar 

  77. John, R. P. et al. A chiral pentadecanuclear metallamacrocycle with a sextuple twisted Möbius topology. J. Am. Chem. Soc. 129, 14142–14143 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Tanda, S. et al. A Möbius strip of single crystals. Nature 417, 397–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Starostin, E. L. & van der Heijden, G. H. M. The shape of a Möbius strip. Nature Mater. 6, 563–567 (2007).

    Article  CAS  Google Scholar 

  80. Jeevanandam, J., Malar, E. J. P. & Gopalan, R. Do Möbius silabenzene and Möbius phosphabenzene exist? Ab initio MO and density functional study of electrocyclic ring-opening reactions of hetero-Dewar benzenes containing silicon or phosphorus. Organometallics 22, 5454–5462 (2003).

    Article  CAS  Google Scholar 

  81. Nakamura, Y. et al. A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 128, 4119–4127 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Yoon, Z. S. et al. Nonlinear optical properties and excited-state dynamics of highly symmetric expanded porphyrins. J. Am. Chem. Soc. 128, 14128–14134 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Yoon, Z. S., Noh, S. B., Cho, D.-G., Sessler, J. L. & Kim, D. Evaluation of planarity and aromaticity in sapphyrin and inverted sapphyrin using a bidirectional NICS (nucleus-independent chemical shift) scan method. Chem. Commun. 2378–2380 (2007).

  84. Mori, S. et al. Peripheral fabrications of a bis-gold(III) complex of [26]hexaphyrin(1.1.1.1.1.1) and aromatic versus antiaromatic effect on two-photon absorption cross section. J. Am. Chem. Soc. 129, 11344–11345 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Yoon, M.-C. et al. Photophysical properties of core-modified expanded porphyrins: nature of aromaticity and enhancement of ring planarity. J. Phys. Chem. B 112, 6900–6905 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Yoon, Z. S., Cho, D.-G., Kim, K. S., Sessler, J. L. & Kim, D. Nonlinear optical properties as a guide to aromaticity in congeneric pentapyrrolic expanded porphyrins: pentaphyrin, sapphyrin, isosmaragdyrin, and orangarin. J. Am. Chem. Soc. 130, 6930–6931 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Herges, R. Aromatics with a twist. Nature 450, 36–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Jux, N. The porphyrin twist: Hückel and Möbius aromaticity. Angew. Chem. Int. Ed. 47, 2543–2546 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Star Faculty and WCU programmes (no. 2008-8-1955) from the Ministry of Education, Science and Technology of Korea, AFSOR/AOARD (grant no. FA4869-08-1-4097) and a Grant-in-Aid for Scientific Research from MEXT (grant no. 19205006). Z.S.Y. acknowledges a fellowship of the BK21 programme from the Ministry of Education, Science and Technology of Korea. We would like to express our gratitude to Sihyun Ham at Sookmyung Women's University for critical discussion and Jonathan. L. Sessler at University of Texas (Austin) for valuable suggestions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, Z., Osuka, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nature Chem 1, 113–122 (2009). https://doi.org/10.1038/nchem.172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing