Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts

Subjects

Abstract

Catalytic enantioselective monosilylations of diols and polyols furnish valuable alcohol-containing molecules in high enantiomeric purity. These transformations, however, require high catalyst loadings (20–30 mol%) and long reaction times (2–5 days). Here, we report that a counterintuitive strategy involving the use of an achiral co-catalyst structurally similar to the chiral catalyst provides an effective solution to this problem. A combination of seemingly competitive Lewis basic molecules can function in concert such that one serves as an achiral nucleophilic promoter and the other performs as a chiral Brønsted base. On the addition of 7.5–20 mol% of a commercially available N-heterocycle (5-ethylthiotetrazole), reactions typically proceed within one hour, and deliver the desired products in high yields and enantiomeric ratios. In some instances, there is no reaction in the absence of the achiral base, yet the presence of the achiral co-catalyst gives rise to facile formation of products in high enantiomeric purity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previously reported enantioselective alcohol silylations, the initially proposed model and the results of initial theoretical studies.
Figure 2: Examples of the catalytic system.
Figure 3: Mechanistic models to account for the observed sense and levels of enantioselectivity (deprotonated 13 serves as the nucleophilic co-catalyst).

Similar content being viewed by others

References

  1. Shibasaki, M. & Kanai, M. in New Frontiers in Asymmetric Catalysis (eds Mikami, K. & Lautens, M.) 383–405 (Wiley, 2007).

    Book  Google Scholar 

  2. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    Article  CAS  Google Scholar 

  3. Patil, N. T., Shinde, V. S. & Gajula, B. A one-pot synthesis: the strategic classification with some recent examples. Org. Biomol. Chem. 10, 211–224 (2012).

    Article  CAS  Google Scholar 

  4. Shao, Z. & Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 38, 2745–2755 (2009).

    Article  CAS  Google Scholar 

  5. Patil, N. T., Mutyala, A. K., Konala A. & Tella, R. B. Tuning the reactivity of Au-complexes in an Au(I)/chiral Brønsted acid cooperative catalytic system: an approach to optically active fused 1,2-dihydroisoquinolines. Chem. Commun. 48, 3094–3096 (2012).

    Article  CAS  Google Scholar 

  6. De, C. K. & Seidel, D. Catalytic enantioselective desymmetrization of meso-diamines: a dual small-molecule catalysis approach. J. Am. Chem. Soc. 133, 14538–14541 (2011).

    Article  CAS  Google Scholar 

  7. Mittal, N., Sun, D. X. & Seidel, D. Kinetic resolution of amines via dual catalysis: remarkable dependence of selectivity on the achiral co-catalyst. Org. Lett. 14, 3084–3087 (2012).

    Article  CAS  Google Scholar 

  8. Zhao, Y., Rodrigo, J., Hoveyda, A. H. & Snapper, M. L. Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule. Nature 443, 67–70 (2006).

    Article  CAS  Google Scholar 

  9. Díaz-de-Villegas, M. D., Gálvez, J. A., Badorrey, R. & López-Ram-de-Víu, M. P. Organocatalyzed enantioselective desymmetrization of diols in the preparation of chiral building blocks. Chem. Eur. J. 18, 13920–13935 (2012).

    Article  Google Scholar 

  10. Yu, Z., Hoveyda, A. H. & Snapper, M. L. Catalytic enantioselective silylation of acyclic and cyclic triols: application to total syntheses of cleroindicins D, F and C. Angew. Chem. Int. Ed. 48, 547–550 (2009).

    Article  Google Scholar 

  11. Rodrigo, J., Zhao, Y., Hoveyda, A. H. & Snapper, M. L. Regiodivergent reactions through catalytic enantioselective silylation of chiral diols. Synthesis of sapinfuranone A. Org. Lett. 13, 3778–3781 (2011).

    Article  CAS  Google Scholar 

  12. Zhao, Y., Mitra, A. W., Hoveyda, A. H. & Snapper, M. L. Kinetic resolution of 1,2-diols through highly site- and enantioselective catalytic silylation. Angew. Chem. Int. Ed. 46, 8471–8474 (2007).

    Article  CAS  Google Scholar 

  13. Sun, X., Worthy, A. D. & Tan, K. L. Scaffolding catalysts: highly enantioselective desymmetrization reactions. Angew. Chem. Int. Ed. 50, 8167–8171 (2011).

    Article  CAS  Google Scholar 

  14. Sheppard, C. I., Taylor, J. L. & Wiskur, S. L. Silylation-based kinetic resolution of monofunctional secondary alcohols. Org. Lett. 13, 3794–3797 (2011).

    Article  CAS  Google Scholar 

  15. Corey, E. J. & Venkateswarlu, A. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc. 94, 6190–6191 (1972).

    Article  CAS  Google Scholar 

  16. Dietze, P. E. & Xu, Y. Mechanism for the general base catalyzed solvolysis of silyl ethers. J. Org. Chem. 59, 5010–5016 (1994).

    Article  CAS  Google Scholar 

  17. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  18. Tandura, S. N., Vronkov, N. G. & Alekseev, N. V. Molecular and electronic structure of penta- and hexacoordinate silicon compounds. Top. Curr. Chem. 131, 99–189 (1986).

    Article  CAS  Google Scholar 

  19. Copeland, G. T. & Miller, S. J. Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: an approach to kinetic resolution of secondary alcohols of broad substrate scope. J. Am. Chem. Soc. 123, 6496–6502 (2001).

    Article  CAS  Google Scholar 

  20. Fierman, M. B., O'Leary, D. J., Steinmetz, W. E. & Miller, S. J. Structure–selectivity relationships and structure for a peptide-based enantioselective acylation catalyst. J. Am. Chem. Soc. 126, 6967–6971 (2004).

    Article  CAS  Google Scholar 

  21. Sculimbrene, B. R., Morgan, A. J. & Miller, S. J. Enantiodivergence in small-molecule catalysis of asymmetric phosphorylation: concise total syntheses of the enantiomeric D-myo-inositol-1-phosphate and D-myo-inositol-3-phosphate. J. Am. Chem. Soc. 124, 11653–11656 (2002).

    Article  CAS  Google Scholar 

  22. Evans, J. W., Fierman, M. B., Miller, S. J. & Ellman, J. A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc. 126, 8134–8135 (2004).

    Article  CAS  Google Scholar 

  23. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. 44, 3974–4001 (2005).

    Article  CAS  Google Scholar 

  24. Trifonov, R. E. & Ostrovskii, V. A. Protolytic equilibria in tetrazoles. Russ. J. Org. Chem. 42, 1585–1605 (2006).

    Article  CAS  Google Scholar 

  25. Lieber, E. & Enkoji, T. Synthesis and properties of 5-(substituted) mercaptotetrazoles. J. Org. Chem. 26, 4472–4479 (1961).

    Article  CAS  Google Scholar 

  26. Welz, R. & Müller, S. 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett. 43, 795–797 (2002).

    Article  CAS  Google Scholar 

  27. Page, M. I. & Jencks, W. P. Entropic contributions to rate accelerations in enzymatic and intramolecular reactions and the chelate effect. Proc. Natl Acad. Sci. USA 68, 1678–1683 (1971).

    Article  CAS  Google Scholar 

  28. Menger, F. M. Enzyme reactivity from an organic perspective. Acc. Chem. Res. 26, 206–212 (1993).

    Article  CAS  Google Scholar 

  29. Bruice, T. C. & Lightstone, F. C. Ground state and transition state contributions to the rates of intramolecular and enzymatic reactions. Acc. Chem. Res. 32, 127–136 (1999).

    Article  CAS  Google Scholar 

  30. Kennan, A. J. & Whitlock, H. W. Host-catalyzed isoxazole ring opening: a rationally designed artificial enzyme. J. Am. Chem. Soc. 118, 3027–3028 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Institutes of Health, Institute of General Medical Sciences (Grant GM-57212). We thank D. Silverio, V. Rendina and B. Potter for many helpful discussions and experimental assistance and Boston College for providing access to computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and H.A. were involved in the development of the catalytic protocol. F.H. designed and performed the theoretical studies. M.L.S. and A.H.H. directed the investigations. A.H.H. wrote the manuscript with revisions provided by the other authors.

Corresponding authors

Correspondence to Amir H. Hoveyda or Marc L. Snapper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manville, N., Alite, H., Haeffner, F. et al. Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nature Chem 5, 768–774 (2013). https://doi.org/10.1038/nchem.1708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing