Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor


Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of electron-transfer reactions and electronic structure of pBQ.
Figure 2: Excited-state dynamics of above-threshold states.
Figure 3: Mechanistic picture of electron stabilization.


  1. 1

    El-Najjar, N. et al. The chemical and biological activities of quinones: overview and implications in analytical detection. Photochem. Rev. 10, 353–370 (2011).

    Article  CAS  Google Scholar 

  2. 2

    Nohl, H., Jordan, W. & Youngman, R. J. Quinones in biology: functions in electron transfer and oxygen activation. Adv. Free Radical. Bio. 2, 211–279 (1986).

    Article  CAS  Google Scholar 

  3. 3

    Iverson, T. M., Luna-Chavez, C. S., Cecchini, G. & Rees, D. C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284, 1961–1966 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  5. 5

    Rehm, D. & Weller, A. Kinetics and mechanics of electron transfer during fluorescence quenching in acetonitrile. Ber. Bunsenges. Phys. Chem. 73, 834–839 (1969).

    CAS  Google Scholar 

  6. 6

    Rehm, D. & Weller, A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–271 (1970).

    Article  CAS  Google Scholar 

  7. 7

    Calcaterra, L. T., Closs, G. L. & Miller, J. R. Fast intramolecular electron transfer in radical ions over long distances across rigid saturated hydrocarbon spacers. J. Am. Chem. Soc. 105, 670–672 (1983).

    Article  CAS  Google Scholar 

  8. 8

    Closs, G. L., Calcaterra, L. T., Green, N. J., Penfield, K. W. & Miller, J. R. Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions. J. Phys. Chem. 90, 3673–3683 (1986).

    Article  CAS  Google Scholar 

  9. 9

    Indelli, M. T., Ballardini, R. & Scandola, F. Experimental investigation of highly exergonic outer-sphere electron-transfer reactions. J. Phys. Chem. 88, 2547–2551 (1984).

    Article  CAS  Google Scholar 

  10. 10

    Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    Article  CAS  Google Scholar 

  11. 11

    Closs, G. L. & Miller, J. R. Intramolecular long-distance electron-transfer in organic molecules. Science 240, 440–447 (1988).

    CAS  Article  Google Scholar 

  12. 12

    Schiedt, J. & Weinkauf, R. Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system. J. Chem. Phys. 110, 304–314 (1999).

    Article  CAS  Google Scholar 

  13. 13

    Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

  14. 14

    Marcus, R. A. & Siders, P. Theory of highly exothermic electron transfer reactions. J. Phys. Chem. 86, 622–630 (1982).

    Article  CAS  Google Scholar 

  15. 15

    Mataga, N., Chosrowjan, H. & Taniguchi, S. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: our early studies and recent developments. J. Photochem. Photobiol. C 6, 37–79 (2005).

    Article  CAS  Google Scholar 

  16. 16

    Morandeira, A., Engeli, L. & Vauthey, E. Ultrafast charge recombination of photogenerated ion pairs to an electronic excited state. J. Phys. Chem. A 106, 4833–4837 (2002).

    Article  CAS  Google Scholar 

  17. 17

    Petersson, J., Eklund, M., Davidsson, J. & Hammarström, L. Ultrafast electron transfer dynamics of a Zn(II)porphyrin–viologen complex revisited: S2 vs S1 reactions and survival of excess excitation energy. J. Phys. Chem. B 114, 14329–14338 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Weber, J., Malsch, K. & Hohlneicher, G. Excited electronic states of p-benzoquinone. Chem. Phys. 264, 275–318 (2001).

    Article  CAS  Google Scholar 

  19. 19

    El Ghazaly, M. O. A., Svendsen, A., Bluhme, H., Nielsen, S. B. Ø . & Andersen, L. H. Electron scattering on p-benzoquinone anions. Chem. Phys. Lett. 405, 278–281 (2005).

    Article  CAS  Google Scholar 

  20. 20

    Siegert, S., Vogeler, F. & Weinkauf, R. Direct access to the dipole-forbidden n π* T1 state of p-benzoquinone by photodetachment photoelectron spectroscopy. Z. Phys. Chem. 225, 507–516 (2011).

    Article  CAS  Google Scholar 

  21. 21

    Mariam, Y. H. & Chantranupong, L. Electron affinities of p-benzoquinone, p-benzoquinone imine and p-benzoquinone diimine, and spin densities of their p-benzosemiq. J. Comput. Aided Mol. Des. 11, 345–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Mohandas, P. & Umapathy, S. Density-functional studies on the structure and vibrational spectra of transient intermediates of p-benzoquinone. J. Phys. Chem. A 101, 4449–4459 (1997).

    Article  CAS  Google Scholar 

  23. 23

    Pou-Amérigo, R., Serrano-Andrés, L., Merchán, M., Ortí, E. & Forsberg, N. A theoretical determination of the low-lying electronic states of the p-benzosemiquinone radical anion. J. Am. Chem. Soc. 122, 6067–6077 (2000).

    Article  CAS  Google Scholar 

  24. 24

    Honda, Y., Hada, M., Ehara, M. & Nakatsuji, H. Excited and ionized states of p-benzoquinone and its anion radical: SAC-CI theoretical study. J. Phys. Chem. A 106, 3838–3849 (2002).

    Article  CAS  Google Scholar 

  25. 25

    Fu, Q., Yang, J. & Wang, X-B. On the electronic structures and electron affinities of the m-benzoquinone (BQ) diradical and the o-, p-BQ molecules: a synergetic photoelectron spectroscopic and theoretical study. J. Phys. Chem. A 115, 3201–3207 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Christophorou, L. G., Carter, J. G. & Christodoulides, A. A. Long-lived parent negative ions in p-benzoquinone formed by electron capture in the field of the ground and excited states. Chem. Phys. Lett. 3, 237–240 (1969).

    Article  CAS  Google Scholar 

  27. 27

    Collins, P. M., Christophorou, L. G., Chaney, E. L. & Carter, J. G. Energy dependence of the electron attachment cross section and the transient negative ion lifetime for p-benzoquinone and 1,4-naphthoquinone. Chem. Phys. Lett. 4, 646–650 (1970).

    Article  CAS  Google Scholar 

  28. 28

    Cooper, C. D., Naff, W. T. & Compton, R. N. Negative ion properties of p-benzoquinone: electron affinity and compound states. J. Chem. Phys. 63, 2752–2757 (1975).

    Article  CAS  Google Scholar 

  29. 29

    Suzuki, T. Femtosecond time-resolved photoelectron imaging. Annu. Rev. Phys. Chem. 57, 555–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Verlet, J. R. R. Femtosecond spectroscopy of cluster anions: insights into condensed-phase phenomena from the gas-phase. Chem. Soc. Rev. 37, 505–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Pegg, D. J. Structure and dynamics of negative ions. Rep. Prog. Phys. 67, 857–905 (2004).

    Article  CAS  Google Scholar 

  32. 32

    Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002–1009 (1948).

    Article  CAS  Google Scholar 

  33. 33

    Baguenard, B., Pinaré, J. C., Bordas, C. & Broyer, M. Photoelectron imaging spectroscopy of small tungsten clusters: direct observation of thermionic emission. Phys. Rev. A 63, 023204 (2001).

    Article  CAS  Google Scholar 

  34. 34

    Hansen, K., Hoffmann, K. & Campbell, E. E. B. Thermal electron emission from the hot electronic subsystem of vibrationally cold C60 . J. Chem. Phys. 119, 2513–2522 (2003).

    Article  CAS  Google Scholar 

  35. 35

    Horke, D. A. & Verlet, J. R. R. Photoelectron spectroscopy of the model GFP chromophore anion. Phys. Chem. Chem. Phys. 14, 8511–8515 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Bernardi, F., Olivucci, M. & Robb, M. A. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321–328 (1996).

    Article  CAS  Google Scholar 

  37. 37

    Domcke, W., Yarkony, D. R. & Köppel, H. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (World Scientific, 2004).

    Google Scholar 

  38. 38

    Klessinger, M. & Michl, J. Excited States and Photochemistry of Organic Molecules (VCH, 1995).

    Google Scholar 

  39. 39

    Yarkony, D. R. Conical intersections: the new conventional wisdom. J. Phys. Chem. A 105, 6277–6293 (2001).

    Article  CAS  Google Scholar 

  40. 40

    Simons, J. in Resonances in Electron-Molecule Scattering, van der Waals Complexes, and Reactive Chemical Dynamics (ed. Truhlar, D. G.) (ACS Symposium Series 263, American Chemical Society, 1984).

    Google Scholar 

  41. 41

    Verlet, J. R. R., Bragg, A. E., Kammrath, A., Cheshnovsky, O. & Neumark, D. M. Time-resolved relaxation dynamics of Hgn (11 ≤ n ≤ 16, n = 18) clusters following intraband excitation at 1.5 eV. J. Chem. Phys. 121, 10015–10025 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Ulstrup, J. & Jortner, J. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J. Chem. Phys. 63, 4358–4368 (1975).

    Article  CAS  Google Scholar 

  43. 43

    Horke, D. A., Roberts, G. M. & Verlet, J. R. R. Excited states in electron-transfer reaction products: ultrafast relaxation dynamics of an isolated acceptor radical anion. J. Phys. Chem. A 115, 8369–8374 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Horke, D. A. & Verlet, J. R. R. Time-resolved photoelectron imaging of the chloranil radical anion: ultrafast relaxation of electronically excited electron acceptor states. Phys. Chem. Chem. Phys. 13, 19546–19552 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Lecointre, J., Roberts, G. M., Horke, D. A. & Verlet, J. R. R. Ultrafast relaxation dynamics observed through time-resolved photoelectron angular distributions. J. Phys. Chem. A 114, 11216–11224 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Roberts, G. M., Lecointre, J., Horke, D. A. & Verlet, J. R. R. Spectroscopy and dynamics of the 7,7,8,8-tetracyanoquinodimethane radical anion. Phys. Chem. Chem. Phys. 12, 6226–6232 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Horke, D. A., Roberts, G. M., Lecointre, J. & Verlet, J. R. R. Velocity-map imaging at low extraction fields. Rev. Sci. Instrum. 83, 063101 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  49. 49

    Roberts, G. M., Nixon, J. L., Lecointre, J., Wrede, E. & Verlet, J. R. R. Toward real-time charged-particle image reconstruction using polar onion-peeling. Rev. Sci. Instrum. 80, 053104 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Ghigo, G., Roos, B. O. & Malmqvist, P-Å. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396, 142–149 (2004).

    Article  CAS  Google Scholar 

  51. 51

    Frisch, M. J. et al. Gaussian 09 A.02 (Gaussian, Inc., Wallingford, Connecticut, 2009).

  52. 52

    Karlström, G. et al. MOLCAS: a program package for computational chemistry. Comp. Mater. Sci. 28, 222–239 (2003).

    Article  CAS  Google Scholar 

Download references


This work was funded by the Engineering and Physical Sciences Research Council (EP/D073472/1), the Spanish Ministerio de Ciencia e Innovación (MICINN) (CTQ2011-26573 and UNGI08-4E-003 from the European Fund for Regional Development) and the Catalan Agència de Gestió d'Ajuts Universitaris i de Recerca (SGR0528). Q.L. acknowledges a Juan de la Cierva fellowship of the MICINN. J.R.R.V. thanks the European Research Council for a Starting Grant.

Author information




D.A.H. and Q.L. contributed equally to this work. D.A.H. and J.R.R.V. conceived the project and performed all the experiments. Q.L. and L.B. designed and performed all the calculations. Q.L. and D.A.H. analysed the computational and experimental results. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Lluís Blancafort or Jan R. R. Verlet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 742 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horke, D., Li, Q., Blancafort, L. et al. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor. Nature Chem 5, 711–717 (2013). https://doi.org/10.1038/nchem.1705

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing