Abstract
Capsular polysaccharides form the outermost protective layer around many Gram-negative bacteria. Antibiotics aimed directly at weakening this layer are not yet available. In pathogenic Escherichia coli E69, a protein, Wza, forms a pore in the outer membrane that transports K30 capsular polysaccharide from its site of synthesis to the outside of the cell. This therefore represents a prospective antibiotic target. Here we test a variety of grommet-like mimics of K30 capsular polysaccharide on wild-type Wza and on mutant open forms of the pore by electrical recording in planar lipid bilayers. The most effective glycomimetic was the unnatural cyclic octasaccharide octakis(6-deoxy-6-amino)cyclomaltooctaose (am8γCD), which blocks the α-helix barrel of Wza, a site that is directly accessible from the external medium. This glycomimetic inhibited K30 polysaccharide transport in live E. coli E69. With the protective outer membrane disrupted, the bacteria can be recognized and killed by the human immune system.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Infectious Diseases Society of America. Bad Bugs, No Drugs (IDSA, 2004), available at http://www.fda.gov/ohrms/dockets/dockets/04s0233/04s-0233-c000005-03-IDSA-vol1.pdf.
ECDC. Antimicrobial Resistance Surveillance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) (European Centre for Disease Prevention and Control, 2011), available at http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2011.pdf.
Lazarev, V. N. & Govorun, V. M. Antimicrobial peptides and their use in medicine. Appl. Biochem. Microbiol. 46, 803–814 (2010).
Whitfield, C., Schoenhals, G. & Graham, L. Mutants of Escherichia coli O9:K30 with altered synthesis and expression of the capsular K30 antigen. J. Gen. Microbiol. 135, 2589–2599 (1989).
Kolkman, M. A., van der Zeijst, B. A. & Nuijten, P. J. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272, 19502–19508 (1997).
Cuthbertson, L., Mainprize, I. L., Naismith, J. H. & Whitfield, C. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol. Mol. Biol. Rev. 73, 155–177 (2009).
Domenico, P., Tomas, J. M., Merino, S., Rubires, X. & Cunha, B. A. Surface antigen exposure by bismuth dimercaprol suppression of Klebsiella pneumoniae capsular polysaccharide. Infect. Immun. 67, 664–669 (1999).
Wu, C. L. et al. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa. Am. J. Respir. Cell. Mol. Biol. 26, 731–738 (2002).
Howard, C. J. & Glynn, A. A. The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology 20, 767–777 (1971).
Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).
Stukalov, O., Korenevsky, A., Beveridge, T. J. & Dutcher, J. R. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules. Appl. Environ. Microbiol. 74, 5457–5465 (2008).
Dong, C. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006).
Walker, B., Krishnasastry, M., Zorn, L., Kasianowicz, J. & Bayley, H. Functional expression of the alpha-hemolysin of Staphylococcus aureus in intact Escherichia coli and in cell lysates. Deletion of five C-terminal amino acids selectively impairs hemolytic activity. J. Biol. Chem. 267, 10902–10909 (1992).
Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).
Collins, R. F. et al. The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 2390–2395 (2007).
Miles, G., Movileanu, L. & Bayley, H. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci. 11, 894–902 (2002).
Merzlyak, P. G., Capistrano, M. F., Valeva, A., Kasianowicz, J. J. & Krasilnikov, O. V. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys. J. 89, 3059–3070 (2005).
Stauffer, D. A. & Karlin, A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33, 6840–6849 (1994).
Karginov, V. A. et al. Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities. Antimicrob. Agents Chemother. 50, 3740–3753 (2006).
Banerjee, A. et al. Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proc. Natl Acad. Sci. USA 107, 8165–8170 (2010).
Nestorovich, E. M., Karginov, V. A., Berezhkovskii, A. M., Parsegian, V. A. & Bezrukov, S. M. Kinetics and thermodynamics of binding reactions as exemplified by anthrax toxin channel blockage with a cationic cyclodextrin derivative. Proc. Natl Acad. Sci. USA 109, 18453–18458 (2012).
Gu, L. Q., Cheley, S. & Bayley, H. Capture of a single molecule in a nanocavity. Science 291, 636–640 (2001).
Martos, V. et al. Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc. Natl Acad. Sci. USA 106, 10482–10486 (2009).
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
Atkins, E. D. T. & Parker, K. D. Cyclic triad of hydrogen bonds in a helical polymer. Nature 220, 784–785 (1968).
Atkins, E. D. T., Parker, K. D. & Preston, R. D. The helical structure of the beta-1,3-Linked xylan in some siphoneous green algae. Proc. R. Soc. Lond. B 173, 209–221 (1969).
Gessler, K. et al. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl Acad. Sci. USA 96, 4246–4251 (1999).
Immel, S. & Lichtenthaler, F. W. The hydrophobic topographies of amylose and its blue iodine complex. Starch 52, 1–8 (2000).
Brisson, J. R., Baumann, H., Imberty, A., Perez, S. & Jennings, H. J. Helical epitope of the group B meningococcal alpha(2-8)-linked sialic acid polysaccharide. Biochemistry 31, 4996–5004 (1992).
Brisson, J. R. et al. NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives. Biochemistry 36, 3278–3292 (1997).
Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380 (1995).
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
Wang, Z. et al. Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environ. Sci. Technol. 45, 6018–6024 (2011).
Woodhull, A. M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).
Ishihara, K. & Yan, D. H. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels. J. Physiol. 583, 891–908 (2007).
Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).
Jung, K., Veen, M. & Altendorf, K. K+ and ionic strength directly influence the autophosphorylation activity of the putative turgor sensor KdpD of Escherichia coli. J. Biol. Chem. 275, 40142–40147 (2000).
Pearl, M., Fishkind, D., Mooseker, M., Keene, D. & Keller, T. III. Studies on the spectrin-like protein from the intestinal brush border, TW 260/240, and characterization of its interaction with the cytoskeleton and actin. J. Cell Biol. 98, 66–78 (1984).
Sen, K., Hellman, J. & Nikaido, H. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J. Biol. Chem. 263, 1182–1187 (1988).
Drummelsmith, J. & Whitfield, C. Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane. EMBO J. 19, 57–66 (2000).
Hungerer, D., Jann, K., Jann, B., Orskov, F. & Orskov, I. Immunochemistry of K antigens of Escherichia coli. 4. The K antigen of E. coli O9:K30:H12. Eur. J. Biochem. 2, 115–126 (1967).
Chakraborty, A. K., Friebolin, H. & Stirm, S. Primary structure of the Escherichia coli serotype K30 capsular polysaccharide. J. Bacteriol. 141, 971–972 (1980).
Clarke, B. R., Cuthbertson, L. & Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem. 279, 35709–35718 (2004).
Fernandez-Prada, C. M. et al. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect. Immun. 69, 4407–4416 (2001).
Moranta, D. et al. Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect. Immun. 78, 1135–1146 (2010).
Regueiro, V. et al. Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect. Immun. 77, 714–724 (2009).
Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature Chem. Biol. 3, 549–556 (2007).
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Rev. Microbiol. 8, 171–184 (2010).
Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).
Acknowledgements
The authors thank J. Naismith and G. Hageluken for the pWQ126 (pBAD-Wza) plasmid, WT Wza protein and the E69 strain, C. Whitfield for the CWG281 strain and O9a antiserum, and N. Rust, C.M. Tang and Min Chen for discussions and advice. The authors thank the Medical Research Council and the Engineering and Physical Sciences Research Council for financial support. L.K. received a Wellcome Trust Value in People (VIP) award and a UK/China Postgraduate Research Scholarship. L.H. was supported by a Biotechnology and Biological Sciences Research Council studentship. B.G.D. is a Royal Society Wolfson Research Merit Award recipient.
Author information
Authors and Affiliations
Contributions
L.K., S.C., B.G.D. and H.B. designed the experiments. L.K. performed protein engineering, single-channel recording, molecular modelling, microbiology, cell wall extraction, flow cytometry, complement-mediated killing and cytotoxicity experiments. Q.L. performed protein engineering. L.H. performed molecular modelling. L.K., B.G.D. and H.B. analysed results. L.K., B.G.D. and H.B. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 3224 kb)
Rights and permissions
About this article
Cite this article
Kong, L., Harrington, L., Li, Q. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nature Chem 5, 651–659 (2013). https://doi.org/10.1038/nchem.1695
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1695
This article is cited by
-
Bacterial biopolymers: from pathogenesis to advanced materials
Nature Reviews Microbiology (2020)
-
Design and Assembly of Transmembrane Helix Barrel
The Journal of Membrane Biology (2020)
-
DNA scaffolds support stable and uniform peptide nanopores
Nature Nanotechnology (2018)
-
Studying glycobiology at the single-molecule level
Nature Reviews Chemistry (2018)
-
A monodisperse transmembrane α-helical peptide barrel
Nature Chemistry (2017)