Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP

Abstract

The development of nanocarriers that selectively release guest molecules on sensing a particular biological signal is being actively pursued in nanomedicine for diagnostic and therapeutic purposes. Here we report a protein-based nanocarrier that opens in the presence of intracellular adenosine-5′-triphosphate (ATP). The nanocarrier consists of multiple barrel-shaped chaperonin units assembled through coordination with Mg2+ into a tubular structure that protects guest molecules against biological degradation. When its surface is functionalized with a boronic acid derivative, the nanocarrier is able to enter cells. The hydrolysis of intracellular ATP into adenosine-5′-diphosphate (ADP) induces conformational changes of the chaperonin units, which in turns generate a mechanical force that leads to the disassembly of the tube and release of the guests. This scission occurs with a sigmoidal dependence on ATP concentration, which means that the nanocarrier can differentiate biological environments in terms of the concentration of ATP for selective guest release. Furthermore, biodistribution tests reveal preferential accumulation of the nanocarriers in a tumour tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the basic strategy for ATP-responsive intracellular drug delivery.
Figure 2: Dissociation of nanotube induced by the action of nucleoside triphosphates.
Figure 3: ATP-responsiveness of GFPdenat-containing nanotube (NT GFPdenat) and cellular uptake of BANT.
Figure 4: ATP-responsive intracellular delivery with cell-penetrable BANT.

Similar content being viewed by others

References

  1. Freitas, R. A. What is nanomedicine? Nanomed. Nanotechnol. Biol. Med. 1, 2–9 (2005).

    Article  CAS  Google Scholar 

  2. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  3. corpvan den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  Google Scholar 

  4. Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, 2003).

    Google Scholar 

  5. Youell, J. & Firman, K. Biological molecular motors for nanodevices. Nanotechnol. Percept. 3, 75–96 (2007).

    CAS  Google Scholar 

  6. Bours, M. J. L., ;Swennen, E. L. R., Virgilio, F. D., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    Article  CAS  Google Scholar 

  7. Mal, N. K., Fujiwara, M. & Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421, 350–353 (2003).

    Article  CAS  Google Scholar 

  8. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nature Nanotech. 4, 325–330 (2009).

    Article  CAS  Google Scholar 

  9. Zhu, C. L., Lu, C. H., Song, X. Y., Yang, H. H. & Wang, X. R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc. 133, 1278–1281 (2011).

    Article  CAS  Google Scholar 

  10. Naito, M. et al. A phenylboronate functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. 51, 10751–10755 (2012).

    Article  CAS  Google Scholar 

  11. King, W., Pytel, N., Ng, K. & Murphy, W. Triggered drug release from dynamic microspheres via a protein conformational change. Macromol. Biosci. 10, 580–584 (2010).

    Article  CAS  Google Scholar 

  12. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  Google Scholar 

  13. Biswas, S. et al. A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. J. Am. Chem. Soc. 131, 7556–7557 (2009).

    Article  CAS  Google Scholar 

  14. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  Google Scholar 

  15. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  17. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  Google Scholar 

  18. Okuda, H. et al. The intermediate domain defines broad nucleotide selectivity for protein folding in Chlamydophila GroEL1. J. Biol. Chem. 283, 9300–9307 (2008).

    Article  CAS  Google Scholar 

  19. Roseman, A. M., Chen, S., White, H., Braig, K. & Saibil, H. R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996).

    Article  CAS  Google Scholar 

  20. Makino, Y., Amada, K., Taguchi, H. & Yoshida, M. Chaperonin-mediated folding of green fluorescent protein. J. Biol. Chem. 272, 12468–12474 (1997).

    Article  CAS  Google Scholar 

  21. Frank, G. A. et al. Out-of-equilibrium conformational cycling of GroEL under saturating ATP concentrations. Proc. Natl Acad. Sci. USA 107, 6270–6274 (2010).

    Article  CAS  Google Scholar 

  22. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995).

    Article  CAS  Google Scholar 

  23. Gray, T. E. & Fersht, A. R. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 292, 254–258 (1991).

    Article  CAS  Google Scholar 

  24. Gribble, F. M. et al. A novel method for measurement of submembrane ATP concentration. J. Biol. Chem. 275, 30046–30049 (2000).

    Article  CAS  Google Scholar 

  25. Gorman, M. W., Feigl, E. O. & Buffington, C. W. Human plasma ATP concentration. Clin. Chem. 53, 318–325 (2007).

    Article  CAS  Google Scholar 

  26. Ellis, G. A., Palte, M. J. & Raines, R. T. Boronate-mediated biologic delivery. J. Am. Chem. Soc. 134, 3631–3634 (2012).

    Article  CAS  Google Scholar 

  27. Otsuka, H., Uchimura, E., Koshino, H., Okano, T. & Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 125, 3493–3502 (2003).

    Article  CAS  Google Scholar 

  28. Shimizu, A. et al. The region of alpha-lactalbumin recognized by GroEL. J. Biochem. 124, 319–325 (1998).

    Article  CAS  Google Scholar 

  29. Makio, T., Arai, M. & Kuwajima, K. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES. J. Mol. Biol. 293, 125–137 (1999).

    Article  CAS  Google Scholar 

  30. Lim, Y. B. et al. A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. Org. Biomol. Chem. 6, 1944–1948 (2008).

    Article  CAS  Google Scholar 

  31. Kim. Y., Choi, Y., Weissleder, R. & Tung, C. H. Membrane permeable esterase-activated fluorescent imaging probe. Bioorg. Med. Chem. Lett. 17, 5054–5057 (2007).

    Article  CAS  Google Scholar 

  32. Tian, L. et al. Selective esterase–ester pair for targeting small molecules with cellular specificity. Proc. Natl Acad. Sci. USA 109, 4756–4761 (2012).

    Article  CAS  Google Scholar 

  33. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  34. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    Article  CAS  Google Scholar 

  35. Ishii, D. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003).

    Article  CAS  Google Scholar 

  36. Pellegatti, P. et al. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS ONE 3, e2599 (2008).

    Article  Google Scholar 

  37. Motojima, F. et al. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Biochem. Biophys. Res. Commun. 267, 842–849 (2000).

    Article  CAS  Google Scholar 

  38. Sakata, T., Yan, Y. & Marriott, G. Family of site-selective molecular optical switches. J. Org. Chem. 70, 2009–2013 (2005).

    Article  CAS  Google Scholar 

  39. Reiner, C. K., Kada, G. & Gruber, H. J. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem. 373, 266–276 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the MEXT, Grant-in-Aid for Scientific Research on Innovative Areas ‘Emergence in Chemistry’ (no. 20111010). S.B. acknowledges financial support from a JSPS Young Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.B. designed and performed all experiments. K. Ki., K.M. and K. Ka. discussed the results. T.N. and H.T. helped with GroELCys production and discussed the mechanism. N.I. obtained TEM micrographs. S.B. and S.W. performed biodistribution studies. S.B. and T.A. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Takuzo Aida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary informatio (PDF 1589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Kinbara, K., Niwa, T. et al. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nature Chem 5, 613–620 (2013). https://doi.org/10.1038/nchem.1681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing