Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct catalytic cross-coupling of organolithium compounds

This article has been updated


Catalytic carbon–carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Catalytic cross-coupling reactions.
Figure 2: Cross-coupling of phenyllithium and 4-methoxy-bromobenzene.
Figure 3: Comparison of established methods and the present cross-coupling protocol with organolithium reagents.

Change history

  • 17 June 2013

    In the version of this Article originally published online, there are three instances where the compound 2u should have been 2x: twice in Table 1, and once in the section 'Pd-catalysed cross-coupling with alkyllithium reagents.' Also in that section, 2s-2v should have been 2v-2y. These errors have been corrected in the HTML and PDF versions of the Article.


  1. 1

    Negishi, E. Magical power of transition metals: past, present, and future. Angew. Chem. Int. Ed. 50, 6738–6764 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442–4489 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Corbet, J. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Ball, L. T., Lloyd-Jones, G. C. & Russell, C. A. Gold-catalyzed direct arylation. Science 337, 1644–1648 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Stille, J. K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew. Chem. Int. Ed. 25, 508–524 (1986).

    Article  Google Scholar 

  10. 10

    Espinet, P. & Echavarren, A. M. The mechanisms of the Stille reaction. Angew. Chem. Int. Ed. 43, 4704–4734 (2004).

    CAS  Google Scholar 

  11. 11

    Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds. Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Miyaura, N. in Metal Catalyzed Cross-Coupling Reactions Vol. 1 (eds De Meijere, A. & Diederich, F.) 41–123 (Wiley-VCH, 2004).

    Book  Google Scholar 

  13. 13

    Knochel, P. & Singer, R. D. Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem. Rev. 93, 2117–2188 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Phapale, V. B. & Cárdenas, D. J. Nickel-catalysed Negishi cross-coupling reactions: scope and mechanisms. Chem. Soc. Rev. 38, 1598–1607 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Hiyama, T. & Nakao, Y. Silicon-based cross-coupling reaction: an environmentally benign version. Chem. Soc. Rev. 40, 4893–4901 (2011).

    Article  Google Scholar 

  16. 16

    Denmark, S. E. & Regens, C. S. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods. Acc. Chem. Res. 41, 1486–1499 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Tamao, K., Sumitani, K. & Kumada, M. Selective carbon–carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel–phosphine complexes. J. Am. Chem. Soc. 94, 4374–4376 (1972).

    CAS  Article  Google Scholar 

  18. 18

    Knappe, C. E. I. & von Wangelin, A. J. 35 years of palladium-catalyzed cross-coupling with Grignard reagents: how far have we come? Chem. Soc. Rev. 40, 4948–4962 (2011).

    Article  Google Scholar 

  19. 19

    Rappoport, Z. & Marek, I. The Chemistry of Organolithium Compounds (Wiley-VHC, 2004).

    Book  Google Scholar 

  20. 20

    Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Murahashi, S., Yamamura, M., Yanagisawa, K., Mita, N. & Kondo, K. Stereoselective synthesis of alkenes and alkenyl sulfides from alkenyl halides using palladium and ruthenium catalysts. J. Org. Chem. 44, 2408–2417 (1979).

    CAS  Article  Google Scholar 

  23. 23

    Nagaki, A., Kenmoku, A., Moriwaki, Y., Hayashi, A. & Yoshida, J. Cross-coupling in a flow microreactor: space integration of lithiation and Murahashi coupling. Angew. Chem. Int. Ed. 49, 7543–7547 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Smith, A., Hoye, A. T., Martinez-Solorio, D., Kim, W. & Tong, R. Unification of anion relay chemistry with the Takeda and Hiyama cross-coupling reactions: identification of an effective silicon-based transfer agent. J. Am. Chem. Soc. 134, 4533–4536 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Pérez, M. et al. Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds. Nature Chem. 3, 377–381 (2011).

    Article  Google Scholar 

  26. 26

    Denmark, S. E., Smith, R. C., Tau, W. T. & Muhuhi, J. M. Cross-coupling reactions of aromatic and heteroaromatic silanolates with aromatic and heteroaromatic halides. J. Am. Chem. Soc. 131, 3104–3118 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Merrill, R. E. & Negishi, E. Tetrahydrofuran-promoted aryl–alkyl coupling involving organolithium reagents. J. Org. Chem. 39, 3452–3453 (1974).

    CAS  Article  Google Scholar 

  29. 29

    Kataoka, N., Shelby, Q., Stambuli, J. P. & Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond-forming cross-couplings. J. Org. Chem. 67, 5553–5566 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Fu, G. C. The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands Acc. Chem. Res. 41, 1555–1564 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Han, C. & Buchwald, S. L. Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides. J. Am. Chem. Soc. 131, 7532–7533 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Lundgren, R. J. & Stradiotto, M. Addressing challenges in palladium-catalyzed cross-coupling reactions through ligand design. Chem. Eur. J. 18, 9758–9769 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Li, H., Johansson Seechurn, C. C. C. & Colacot, T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 Nobel Prize. ACS Catal. 2, 1147–1164 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Anctil, E. J. & Snieckus, V. in Metal Catalyzed Cross-Coupling Reactions Vol. 1 (eds De Meijere, A. & Diederich, F.) 761–813 (Wiley-VCH, 2004).

    Book  Google Scholar 

  36. 36

    Stoit, A., Iwema Bakker, W. I., Coolen, H., van Dongen, M. & Leflemme, N. J. Spiro-cyclic amine derivatives as S1P modulators. PCT patent application WO 2012004378 (A1) (2012).

  37. 37

    Doucet, H. Suzuki–Miyaura cross-coupling reactions of alkylboronic acid derivatives or alkyltrifluoroborates with aryl, alkenyl or alkyl halides and triflates. Eur. J. Org. Chem. 2013–2030 (2008).

    Article  Google Scholar 

  38. 38

    Woon, K. L. et al. Electronic charge transport in extended nematic liquid crystals. Chem. Mater. 18, 2311–2317 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Liu, L. et al. Effect of oligothienyl chain length on tuning the solar cell performance in fluorene-based polyplatinynes. Adv. Funct. Mater. 18, 2824–2833 (2008).

    CAS  Article  Google Scholar 

Download references


The authors thank the Netherlands Organization for Scientific Research (NWO-CW), the National Research School Catalysis (NRSC-C) and the European Research Council (ERC advanced grant 227897 to B.L.F.) for financial support.

Author information




M.G. and M.F.-M. performed the experiments. M.G., M.F.-M. and B.L.F. designed the experiments, analysed the data and wrote the manuscript. B.L.F. guided the research.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1713 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giannerini, M., Fañanás-Mastral, M. & Feringa, B. Direct catalytic cross-coupling of organolithium compounds. Nature Chem 5, 667–672 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing