Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Janus-faced role of external forces in mechanochemical disulfide bond cleavage

Abstract

Recent force microscopy measurements on the mechanically activated cleavage of a protein disulfide bond through reaction with hydroxide ions revealed that for forces greater than 0.5 nN, the acceleration of the reaction rate is substantially reduced. Here, using ab initio simulations, we trace this ‘reactivity switch’ back to a dual role played by the mechanical force, which leads to antagonistic effects. On the one hand, the force performs work on the system, and thereby accelerates the reaction. On the other hand, the force also induces a conformational distortion that involves the S–S–C–C dihedral angle, which drives the disulfide into a conformation that is shielded against nucleophilic attack because of steric hindrance. The discovery of force-induced conformational changes that steer chemical reactivity provides a new key concept that is expected to be relevant beyond this specific case, for example in understanding how ‘disulfide switches’ regulate protein function and for the rational design of mechanoresponsive materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The computed force dependence of the activation free energy, ΔA(F), and reaction rate of disulfide-bond reduction by hydroxide ions features a mechanochemical switch.
Figure 2: The solvation shell of the hydroxide anion nucleophile changes as it approaches the disulfide bridge and reacts with it.
Figure 3: The external force reshapes the FES for the SN2 cleavage of diethyl disulfide by OH.
Figure 4: The external force has a huge impact on the FEP along the S–S*–C–C dihedral angle of diethyl disulfide, in contrast to that along the C–S–S–C dihedral angle.

Similar content being viewed by others

References

  1. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    CAS  PubMed  Google Scholar 

  2. Caruso, M. M. et al. Mechanically induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009).

    CAS  PubMed  Google Scholar 

  3. Black, A. L., Lenhardt, J. M. & Craig, S. L. From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 21, 1655–1663 (2011).

    CAS  Google Scholar 

  4. Ribas-Arino, J. & Marx, D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112, 5412–5487 (2012).

    CAS  PubMed  Google Scholar 

  5. Wiita, A. P., Ainavarapu, S. R. K., Huang, H. H. & Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl Acad. Sci. USA 103, 7222–7227 (2006).

    CAS  PubMed  Google Scholar 

  6. Wiita, A. P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ainavarapu, S. R. K., Wiita, A. P., Dougan, L., Uggerud, E. & Fernandez, J. M. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J. Am. Chem. Soc. 130, 6479–6487 (2008).

    CAS  Google Scholar 

  8. Liang, J. & Fernandez, J. M. Mechanochemistry: one bond at a time. ACSNano 3, 1628–1645 (2009).

    CAS  Google Scholar 

  9. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T. L. & Fernandez, J. M. Force-activated reactivity switch in a bimolecular chemical reaction. Nature Chem. 1, 236–242 (2009).

    CAS  Google Scholar 

  10. Kucharski, T. J. et al. Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew. Chem. Int. Ed. 48, 7040–7043 (2009).

    CAS  Google Scholar 

  11. Liang, J. & Fernandez, J. M. Kinetic measurements on single-molecule disulfide bond cleavage. J. Am. Chem. Soc. 133, 3528–3534 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J. A. & Fernandez, J. M. Direct observation of disulfide isomerization in a single protein. Nature Chem. 3, 882–887 (2011).

    CAS  Google Scholar 

  13. Wouters, M. A., Fan, S. W. & Haworth, N. L. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid. Redox Signal. 12, 53–91 (2010).

    CAS  PubMed  Google Scholar 

  14. Matthias, L. J. et al. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-I. Nature Immunol. 3, 727–732 (2002).

    CAS  Google Scholar 

  15. Ahamed, J. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc. Natl Acad. Sci. USA 103, 13932–13937 (2006).

    CAS  PubMed  Google Scholar 

  16. Huang, Z. & Boulatov, R. Chemomechanics: chemical kinetics for multiscale phenomena. Chem. Soc. Rev. 40, 2359–2384 (2011).

    CAS  PubMed  Google Scholar 

  17. Hofbauer, F. & Frank, I. Disulfide bond cleavage: a redox reaction without electron transfer. Chem. Eur. J. 16, 5097–5101 (2010).

    CAS  PubMed  Google Scholar 

  18. Li, W. & Gräter, F. Atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J. Am. Chem. Soc. 132, 16790–16795 (2010).

    CAS  PubMed  Google Scholar 

  19. Iozzi, M. F., Helgaker, T. & Uggerud, E. Influence of external force on properties and reactivity of disulfide bonds. J. Phys. Chem. A 115, 2308–2315 (2011).

    CAS  PubMed  Google Scholar 

  20. Baldus, I. B. & Gräter, F. Mechanical force can fine-tune redox potentials of disulfide bonds. Biophys. J. 102, 622–629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Keten, S., Chou, C-C., van Duin, A. C. & Buehler, M. J. Tunable nanomechanics of protein disulfide bonds in redox microenvironments. J. Mech. Behav. Biomed. Mater. 5, 32–40 (2012).

    CAS  PubMed  Google Scholar 

  22. Hofbauer, F. & Frank, I. CPMD simulation of a bimolecular chemical reaction: nucleophilic attack of a disulfide bond under mechanical stress. Chem. Eur. J. 18, 16332–16338 (2012).

    CAS  PubMed  Google Scholar 

  23. Pappas, J. A. Theoretical studies of the reactions of the sulfur–sulfur bond. 1. General heterolytic mechanisms. J. Am. Chem. Soc. 99, 2926–2930 (1977).

    CAS  Google Scholar 

  24. Bachrach, S. M. & Mulhearn, D. C. Nucleophilic substitution at sulfur: SN2 or addition–elimination? J. Phys. Chem. 100, 3535–3540 (1996).

    CAS  Google Scholar 

  25. Fernandes, P. A. & Ramos, M. J. Theoretical insights into the mechanism for thiol/disulfide exchange. Chem. Eur. J. 10, 257–266 (2004).

    CAS  PubMed  Google Scholar 

  26. Dmitrenko, O., Thorpe, C. & Bach., R. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents. J. Org. Chem. 72, 8298–8307 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bach, R. D., Dmitrenko, O. & Thorpe, C. Mechanism of thiolate–disulfide interchange reactions in biochemistry. J. Org. Chem. 73, 12–21 (2008).

    CAS  PubMed  Google Scholar 

  28. Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009).

    Google Scholar 

  29. Hayes, J. M. & Bachrach, S. M. Effect of micro and bulk solvation on the mechanism of nucleophilic substitution at sulfur in disulfides. J. Phys. Chem. A 107, 7952–7961 (2003).

    CAS  Google Scholar 

  30. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    CAS  PubMed  Google Scholar 

  31. Iannuzzi, M., Laio, A. & Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car–Parrinello molecular dynamics. Phys. Rev. Lett. 90, 238302 (2003).

    PubMed  Google Scholar 

  32. Carter, E., Ciccotti, G., Hynes, J. T. & Kapral, R. Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, 472–477 (1989).

    CAS  Google Scholar 

  33. Sprik, M. & Ciccotti, G. Free energy from constrained molecular dynamics. J. Chem. Phys. 109, 7737–7744 (1998).

    CAS  Google Scholar 

  34. Dopieralski, P., Ribas-Arino, J. & Marx, D. Force-transformed free energy surfaces and trajectory shooting simulations reveal the mechano-stereochemistry of cyclopropane ring-opening reactions. Angew. Chem. Int. Ed. 50, 7105–7108 (2011).

    CAS  Google Scholar 

  35. Ribas-Arino, J., Shiga, M. & Marx, D. Understanding covalent mechanochemistry. Angew. Chem. Int. Ed. 48, 4190–4193 (2009).

    CAS  Google Scholar 

  36. Singh, R. & Whitesides, G. M. in Supplement S: The Chemistry of Sulphur-Containing Functional Groups (eds Patai, S. & Rappoport, Z.) 633–658 (John Wiley, 1993).

    Google Scholar 

  37. Marx, D., Chandra, A. & Tuckerman, M. E. Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 110, 2174–2216 (2010).

    CAS  PubMed  Google Scholar 

  38. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    CAS  PubMed  Google Scholar 

  39. Ribas-Arino, J., Shiga, M. & Marx, D. Mechanochemical transduction of externally applied forces to mechanophores. J. Am. Chem. Soc. 132, 10609–10614 (2010).

    CAS  PubMed  Google Scholar 

  40. Dopieralski, P. et al. On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. J. Mater. Chem. 21, 8309–8316 (2011).

    CAS  Google Scholar 

  41. Tian, Y. & Boulatov, R. Quantum-chemical validation of the local assumption of chemomechanics for a unimolecular reaction. ChemPhysChem 13, 2277–2281 (2012).

    CAS  PubMed  Google Scholar 

  42. Haworth, N. L., Gready, J. E., George, R. A. & Wouters, M. A. Evaluating the stability of disulfide bridges in proteins: a torsional potential energy surface for diethyl disulfide. Mol. Simul. 33, 475–485 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuo, T-L. et al. Probing static disorder in Arrhenius kinetics by single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 107, 11336–11340 (2010).

    CAS  PubMed  Google Scholar 

  44. Garcia-Manyes, S., Kuo, T-L. & Fernandez, J. M. Contrasting the individual reactive pathways in protein unfolding and disulfide bond reduction observed within a single protein. J. Am. Chem. Soc. 133, 3104–3113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bailey, A. & Mosey, N. J. Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J. Chem. Phys. 136, 044102 (2012).

    PubMed  Google Scholar 

  46. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    CAS  PubMed  Google Scholar 

  47. Prezhdo, O. V. & Pereverzev, Y. V. Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42, 693–703 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinsschaft (Reinhart Koselleck Grant Understanding Mechanochemistry (MA 1547/9) and Cluster of Excellence RESOLV (EXC 1069)), Alexander von Humboldt Stiftung (Humboldt Fellowship to J.R-A), the Spanish Government (Ramón y Cajal Fellowship to J.R-A.) and the Research Department Interfacial Systems Chemistry for partial financial support. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large Scale Project on JUQUEEN at Jülich Supercomputing Centre (JSC) as well as computational support by BOVILAB@RUB, Rechnerverbund-NRW, Wroclaw Supercomputer Center (WCSS), Galera-ACTION Cluster and Academic Computer Center in Gdańsk (CI TASK).

Author information

Authors and Affiliations

Authors

Contributions

P.D, J.R-A. and D.M. conceived and designed the research; P.D. performed the calculations; P.D, J.R-A., P.A., M.K. and D.M. analysed the data; J.K. contributed analysis tools; J.R-A., P.D. and D.M. co-wrote the paper.

Corresponding authors

Correspondence to Przemyslaw Dopieralski or Jordi Ribas-Arino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopieralski, P., Ribas-Arino, J., Anjukandi, P. et al. The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nature Chem 5, 685–691 (2013). https://doi.org/10.1038/nchem.1676

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing