Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Studying the role of protein dynamics in an SN2 enzyme reaction using free-energy surfaces and solvent coordinates

Abstract

Conformational changes are known to be able to drive an enzyme through its catalytic cycle, allowing, for example, substrate binding or product release. However, the influence of protein motions on the chemical step is a controversial issue. One proposal is that the simple equilibrium fluctuations incorporated into transition-state theory are insufficient to account for the catalytic effect of enzymes and that protein motions should be treated dynamically. Here, we propose the use of free-energy surfaces, obtained as a function of both a chemical coordinate and an environmental coordinate, as an efficient way to elucidate the role of protein structure and motions during the reaction. We show that the structure of the protein provides an adequate environment for the progress of the reaction, although a certain degree of flexibility is needed to attain the full catalytic effect. However, these motions do not introduce significant dynamical corrections to the rate constant and can be described as equilibrium fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the SN2 reaction catalysed by DhlA.
Figure 2: FESs corresponding to the SN2 reaction between an acetate anion and dichloroethane.
Figure 3: The TS ensembles obtained from equilibrium and non-equilibrium pictures differ slightly, as reflected in the respective dividing surfaces.

Similar content being viewed by others

References

  1. Hammes, G. G., Benkovic, S. J. & Hammes-Schiffer, S. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50, 10422–10430 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Henzler-Wildman, K. A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Benkovic, S. J., Hammes, G. G. & Hammes-Schiffer, S. Free-energy landscape of enzyme catalysis. Biochemistry 47, 3317–3321 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D. G. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gao, J. et al. Mechanisms and free energies of enzymatic reactions. Chem. Rev. 106, 3188–3209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olsson, M. H. M., Parson, W. W. & Warshel, A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem. Rev. 106, 1737–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Antoniou, D., Basner, J., Núñez, S. & Schwartz, S. D. Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem. Rev. 106, 3170–3187 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Nashine, V. C., Hammes-Schiffer, S. & Benkovic, S. J. Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramanathan, A. & Agarwal, P. K. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol 9, e1001193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, J. & Klinman, J. P. Enzymatic methyl transfer: role of an active site residue in generating active site compaction that correlates with catalytic efficiency. J. Am. Chem. Soc. 133, 17134–17137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamczyk, A. J., Cao, J., Kamerlin, S. C. L. & Warshel, A. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc. Natl Acad. Sci. USA 108, 14115–14120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glowacki, D. R., Harvey, J. N. & Mulholland, A. J. Taking Ockham's razor to enzyme dynamics and catalysis. Nature Chem. 4, 169–176 (2012).

    Article  CAS  Google Scholar 

  15. Kamerlin, S. C. L. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kurplus, M & McCammon, J A. Dynamics of proteins: elements and function. Annu. Rev. Biochem. 52, 263–300 (1983).

    Article  Google Scholar 

  18. Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    Article  CAS  Google Scholar 

  19. Kosugi, T. & Hayashi, S. Crucial role of protein flexibility in formation of a stable reaction transition state in an α-amylase catalysis. J. Am. Chem. Soc. 134, 7045–7055 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Pang, J., Pu, J., Gao, J., Truhlar, D. G. & Allemann, R. K. Hydride Transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. J. Am. Chem. Soc. 128, 8015–8023 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kanaan, N. et al. Temperature dependence of the kinetic isotope effects in thymidylate synthase. A theoretical study. J. Am. Chem. Soc. 133, 6692–6702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hay, S. & Scrutton, N. S. Good vibrations in enzyme-catalysed reactions. Nature Chem. 4, 161–168 (2012).

    Article  CAS  Google Scholar 

  23. Pu, J., Gao, J. & Truhlar, D. G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem. Rev. 106, 3140–3169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boekelheide, N., Salomón-Ferrer, R. & Miller, T. F. Dynamics and dissipation in enzyme catalysis. Proc. Natl Acad. Sci. USA 108, 16159–16163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrett, B. C. & Truhlar, D. G. in Theory and Applications of Computational Chemistry (eds Dykstra, C. E., Frenking, G., Kim, K. S. & Scuseria, G. E.) 67–87 (Elsevier, 2005).

    Book  Google Scholar 

  26. Grote, R. F. & Hynes, J. T. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys. 73, 2715–2732 (1980).

    Article  CAS  Google Scholar 

  27. Bergsma, J. P., Gertner, B. J., Wilson, K. R. & Hynes, J. T. Molecular dynamics of a model SN2 reaction in water. J. Chem. Phys. 86, 1356–1376 (1987).

    Article  CAS  Google Scholar 

  28. Ruiz-Pernía, J. J., Tuñón, I., Moliner, V., Hynes, J. T. & Roca, M. Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase. Beyond the frozen environment approach. J. Am. Chem. Soc. 130, 7477–7488 (2008).

    Article  PubMed  Google Scholar 

  29. Gertner, B. J., Bergsma, J. P., Wilson, K. R., Lee, S. & Hynes, J. T. Nonadiabatic solvation model for SN2 reactions in polar solvents. J. Chem. Phys. 86, 1377–1386 (1987).

    Article  CAS  Google Scholar 

  30. Hwang, J. K., King, G., Creighton, S. & Warshel, A. Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution. J. Am. Chem. Soc. 110, 5297–5311 (1988).

    Article  CAS  Google Scholar 

  31. Gertner, B. J., Wilson, K. R. & Hynes, J. T. Nonequilibrium solvation effects on reaction rates for model SN2 reactions in water. J. Chem. Phys. 90, 3537–3558 (1989).

    Article  CAS  Google Scholar 

  32. Ruiz-Pernía, J. J., Martí, S., Moliner, V. & Tuñón, I. A novel strategy to study electrostatic effects in chemical reactions: differences between the role of solvent and the active site of chalcone isomerase in a Michael addition. J. Chem. Theory Comput. 8, 1532–1535 (2012).

    Article  PubMed  Google Scholar 

  33. Janssen, D. B., Scheper, A., Dijkhuizen, L. & Witholt, B. Degradation of halogenated aliphatic-compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49, 673–677 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schanstra, J. P., Kingma, J. & Janssen, D. B. Specificity and kinetics of haloalkane dehalogenase. J. Biol. Chem. 271, 14747–14753 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Devi-Kesavan, L. S. & Gao, J. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase. J. Am. Chem. Soc. 125, 1532–1540 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Shurki, A., Štrajbl, M., Villà, J. & Warshel, A. How much do enzymes really gain by restraining their reacting fragments? J. Am. Chem. Soc. 124, 4097–4107 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Soriano, A. et al. Electrostatic effects in enzyme catalysis: a quantum mechanics/molecular mechanics study of the nucleophilic substitution reaction in haloalkane dehalogenase. Theor. Chem. Accounts 112, 327–334 (2004).

    Article  CAS  Google Scholar 

  38. Soriano, A., Silla, E., Tuñón, I. & Ruiz-Lopez, M. F. Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase. J. Am. Chem. Soc. 127, 1946–1957 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Okamoto, K., Kita, T., Araki, K. & Shingu, H. Kinetic studies of bimolecular nucleophilic substitution. 4. Rates of SN2 and E2 reactions of beta-substituted ethyl chlorides with sodium acetate in aqueous solutions. B. Chem. Soc. Jpn 40, 1913 (1967).

    Article  CAS  Google Scholar 

  40. Truhlar, D. G. & Garrett, B. C. Variational transition-state theory. Acc. Chem. Res. 13, 440–448 (1980).

    Article  CAS  Google Scholar 

  41. Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  42. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  43. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  44. Gao, J. & Xia, X. A two-dimensional energy surface for a type II SN2 reaction in aqueous solution. J. Am. Chem. Soc. 115, 9667–9675 (1993).

    Article  CAS  Google Scholar 

  45. Verschueren, K. H., Seljée, F., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Article  Google Scholar 

  48. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    Article  CAS  Google Scholar 

  49. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 120, 215–241 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Ministerio de Economía y Competitividad (MEC) through project CTQ2012-36253-C03. J.J.R-P. thanks a Juan de la Cierva contract and R.G-M. a FPU fellowship of the Ministerio de Economía y Competitividad. I.T. acknowledges helpful discussions held with D. Laage and J. T. Hynes during his sabbatical stay at the École Normale Supérieure, France. The authors acknowledge computational facilities of the Servei d'Informàtica de la Universitat de València on the ‘Tirant’ supercomputer.

Author information

Authors and Affiliations

Authors

Contributions

I.T., V.M. and J.J.R‐P. designed the computational experiments. S.M. wrote the code and R.G-M. performed the calculations. I.T., V.M. and J.J.R-P. co-wrote the first version of the paper. All the authors commented and discussed the results and the final version of the manuscript.

Corresponding authors

Correspondence to J. Javier Ruiz-Pernía or Iñaki Tuñón.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Meseguer, R., Martí, S., Ruiz-Pernía, J. et al. Studying the role of protein dynamics in an SN2 enzyme reaction using free-energy surfaces and solvent coordinates. Nature Chem 5, 566–571 (2013). https://doi.org/10.1038/nchem.1660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1660

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing