Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition of shape and interaction patchiness for self-assembling nanoplates

Abstract

Progress in nanocrystal synthesis and self-assembly enables the formation of highly ordered superlattices. Recent studies focused on spherical particles with tunable attraction and polyhedral particles with anisotropic shape, and excluded volume repulsion, but the effects of shape on particle interaction are only starting to be exploited. Here we present a joint experimental–computational multiscale investigation of a class of highly faceted planar lanthanide fluoride nanocrystals (nanoplates, nanoplatelets). The nanoplates self-assemble into long-range ordered tilings at the liquid–air interface formed by a hexane wetting layer. Using Monte Carlo simulation, we demonstrate that their assembly can be understood from maximization of packing density only in a first approximation. Explaining the full phase behaviour requires an understanding of nanoplate-edge interactions, which originate from the atomic structure, as confirmed by density functional theory calculations. Despite the apparent simplicity in particle geometry, the combination of shape-induced entropic and edge-specific energetic effects directs the formation and stabilization of unconventional long-range ordered assemblies not attainable otherwise.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structural characterization of monodisperse lanthanide fluoride nanocrystals.
Figure 2: 2D superlattices self-assembled from lanthanide fluoride nanoplates.
Figure 3: Monte Carlo simulations of hard polygonal plates.
Figure 4: Atomic structure of DyF3 surfaces.
Figure 5: Modelling and simulation of interacting lanthanide fluoride nanoplates.

Similar content being viewed by others

References

  1. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  2. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  3. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    Article  CAS  Google Scholar 

  4. Ye, X. et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl Acad. Sci. USA 107, 22430–22435 (2010).

    Article  CAS  Google Scholar 

  5. Langille, M. R., Zhang, J., Personick, M. L., Li, S. & Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337, 954–957 (2012).

    Article  CAS  Google Scholar 

  6. Zhang, Y. W., Sun, X., Si, R., You, L. P. & Yan, C. H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127, 3260–3261 (2005).

    Article  CAS  Google Scholar 

  7. Saunders, A. E., Ghezelbash, A., Smilgies, D. M., Sigman, M. B. & Korgel, B. A. Columnar self-assembly of colloidal nanodisks. Nano Lett. 6, 2959–2963 (2006).

    Article  CAS  Google Scholar 

  8. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  9. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  10. Yethiraj, A. & Van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

    Article  CAS  Google Scholar 

  11. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  12. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  13. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  14. Zhao, K., Bruinsma, R. & Mason, T. G. Entropic crystal–crystal transitions of Brownian squares. Proc. Natl Acad. Sci. USA 108, 2684–2687 (2011).

    Article  CAS  Google Scholar 

  15. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).

    Article  CAS  Google Scholar 

  16. Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609–614 (2012).

    Article  CAS  Google Scholar 

  17. Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nature Mater. 10, 230–235 (2011).

    Article  CAS  Google Scholar 

  18. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Mater. 10, 872–876 (2011).

    Article  CAS  Google Scholar 

  19. Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nature Mater. 11, 131–137 (2011).

    Article  Google Scholar 

  20. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    Article  CAS  Google Scholar 

  21. Evers, W. H. et al. Entropy-driven formation of binary semiconductor–nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).

    Article  CAS  Google Scholar 

  22. Chen, Z., Moore, J., Radtke, G., Sirringhaus, H. & O'Brien, S. Binary nanoparticle superlattices in the semiconductor–semiconductor system: CdTe and CdSe. J. Am. Chem. Soc. 129, 15702–15709 (2007).

    Article  CAS  Google Scholar 

  23. Chen, Z. & O'Brien, S. Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2, 1219–1229 (2008).

    Article  CAS  Google Scholar 

  24. Dong, A., Ye, X., Chen, J. & Murray, C. B. Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers. Nano Lett. 11, 1804–1809 (2011).

    Article  CAS  Google Scholar 

  25. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  26. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).

    Article  CAS  Google Scholar 

  27. Glotzer, S. C. Nanotechnology: shape matters. Nature 481, 450–452 (2012).

    Article  CAS  Google Scholar 

  28. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface–ligand interactions. ACS Nano 6, 2118–2127 (2012).

    Article  CAS  Google Scholar 

  29. Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077–1081 (2008).

    Article  CAS  Google Scholar 

  30. Stannard, A. et al. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nature Chem. 4, 112–117 (2012).

    Article  CAS  Google Scholar 

  31. Whitelam, S., Tamblyn, I., Beton, P. & Garrahan, J. Random and ordered phases of off-lattice rhombus tiles. Phys. Rev. Lett. 108, 1–4 (2012).

    Article  Google Scholar 

  32. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  33. Zhao, K. & Mason, T. G. Twinning of rhombic colloidal crystals. J. Am. Chem. Soc. 134, 18125–18131 (2012).

    Article  CAS  Google Scholar 

  34. Zalkin, A. & Templeton, D. The crystal structures of YF3 and related compounds. J. Am. Chem. Soc. 75, 2453–2458 (1953).

    Article  CAS  Google Scholar 

  35. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  36. Van der Kooij F. M., Kassapidou, K. & Lekkerkerker, H. M. W. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000).

    Article  CAS  Google Scholar 

  37. Paik, T., Ko, D-K., Gordon, T. R., Doan-Nguyen, V. & Murray, C. B. Studies of liquid crystalline self-assembly of GdF3 nanoplates by in-plane, out-of-plane SAXS. ACS Nano 5, 8322–8230 (2011).

    Article  CAS  Google Scholar 

  38. Stannard, A., Blunt, M. O., Beton, P. H. & Garrahan, J. P. Entropically stabilized growth of a two-dimensional random tiling. Phys. Rev. E 82, 041109 (2010).

    Article  Google Scholar 

  39. Roke, S., Berg, O., Buitenhuis, J., Van Blaaderen, A. & Bonn, M. Surface molecular view of colloidal gelation. Proc. Natl Acad. Sci. USA 103, 13310–13314 (2006).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.Y. and C.B.M. acknowledge support from the Office of Naval Research Multidisciplinary University Research Initiative on Optical Metamaterials through award N00014-10-1-0942. J.C. acknowledges support from the Materials Research Science and Engineering Center program of the National Science Foundation (NSF) under award DMR-1120901. C.B.M. is also grateful to the Richard Perry University Professorship for support of his supervisor role. M.E., J.A.M. and S.C.G. acknowledge support by the Assistant Secretary of Defense for Research and Engineering, US Department of Defense (N00244-09-1-0062). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOD/ASD (R&E). W.L., L.Q. and J.L. acknowledge support from the NSF (DMR-1120901). G.X. and C.R.K. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Award DE-SC0002158). Correspondence and requests for materials should be addressed to S.C.G. and C.B.M.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and J.E.C. carried out nanocrystal syntheses. X.Y. and J.C. performed nanocrystal self-assembly and structural characterization. M.E. conceived the Monte Carlo simulations. J.A.M. performed and analysed the Monte Carlo simulations. W.L. and L.Q. performed DFT calculations. G.X. conducted atomic force microscopy (AFM) characterization. S.C.G. and C.B.M. designed the study and supervised the project. All authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Sharon C. Glotzer or Christopher B. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9232 kb)

Supplementary information

Supplementary Movie 1 (MP4 4839 kb)

Supplementary information

Supplementary Movie 2 (MP4 4839 kb)

Supplementary information

Supplementary Movie 3 (MP4 4505 kb)

Supplementary information

Supplementary Movie 4 (MP4 4738 kb)

Supplementary information

Supplementary Movie 5 (MP4 6212 kb)

Supplementary information

Supplementary Movie 6 (MP4 4508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Chen, J., Engel, M. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nature Chem 5, 466–473 (2013). https://doi.org/10.1038/nchem.1651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing