Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charging a Li–O2 battery using a redox mediator

Abstract

The non-aqueous Li–air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li–O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li–O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF+ at the cathode surface; TTF+ in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron–hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: O2 evolution from the reaction between oxidizing mediators and Li2O2.
Figure 2: First-cycle load curves (constant-current discharge/charge) with and without the redox mediator.
Figure 3: Cycling stability of Li–O2 cathodes that employ a redox mediator.
Figure 4: Vibration spectra at the end of discharge and charge.

Similar content being viewed by others

References

  1. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  3. Shao, Y. Y. et al. Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal. 2, 844–857 (2012).

    Article  CAS  Google Scholar 

  4. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    Article  CAS  Google Scholar 

  5. Scrosati, B., Hassoun, J. & Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011).

    Article  CAS  Google Scholar 

  6. Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    Article  CAS  Google Scholar 

  7. Chen, Z., Choi, J. Y., Wang, H. J., Li, H. & Chen, Z. W. Highly durable and active non-precious air cathode catalyst for zinc air battery. J. Power Sources 196, 3673–3677 (2011).

    Article  CAS  Google Scholar 

  8. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    Article  CAS  Google Scholar 

  9. Etacheri, V., Marom, R., Elazari, R., Salitra G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  CAS  Google Scholar 

  10. Ji, X. L. & Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    Article  CAS  Google Scholar 

  11. Zhang, T., Imanishi, N., Takeda, Y. & Yamamoto, O. Aqueous lithium/air rechargeable batteries. Chem. Lett. 40, 668–673 (2011).

    Article  CAS  Google Scholar 

  12. Lu, Y-C., Gasteiger, H. A. & Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J. Am. Chem. Soc. 133, 19048–19051 (2011).

    Article  CAS  Google Scholar 

  13. Veith, G. M., Dudney, N. J., Howe, J. & Nanda, J. Spectroscopic characterization of solid discharge products in Li–air cells with aprotic carbonate electrolytes. J. Phys. Chem. C 115, 14325–14333 (2011).

    Article  CAS  Google Scholar 

  14. Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7,282,295 (2007).

  15. McCloskey, B. D. et al. On the efficacy of electrocatalysis in non-aqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Article  CAS  Google Scholar 

  16. He, P., Wang, Y. G. & Zhou, H. S. A Li–air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem. Comm. 12, 1686–1689 (2010).

    Article  CAS  Google Scholar 

  17. Jung, H. G., Hassoun, J., Park, J. B., Sun, Y. K. & Scrosati, B. An improved high-performance lithium–air battery. Nature Chem. 4, 579–585 (2012).

    Article  CAS  Google Scholar 

  18. Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    Article  CAS  Google Scholar 

  19. Laoire, C. O., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME–LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011).

    Article  CAS  Google Scholar 

  20. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Article  CAS  Google Scholar 

  21. Choi, N-S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).

    Article  CAS  Google Scholar 

  22. Mo, Y. F., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium–air battery. Phys. Rev. B 84, 205446 (2011).

  23. Lu, Y-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).

    Article  CAS  Google Scholar 

  24. Peng, Z., Freunberger, S. A., Chen, Y. H. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    Article  CAS  Google Scholar 

  25. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  CAS  Google Scholar 

  26. Xie, B. et al. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Comm. 10, 1195–1197 (2008).

    Article  CAS  Google Scholar 

  27. Xu, W., Xiao, J., Wang, D. Y., Zhang, J. & Zhang, J. G. Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem. Solid State Lett. 13, A48–A51 (2010).

    Article  CAS  Google Scholar 

  28. Shanmukaraj, D. et al. Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010).

    Article  CAS  Google Scholar 

  29. Lacey, M. J., Frith, J. T. & Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Comm. 26, 74–76 (2012).

    Article  Google Scholar 

  30. Giordani, V. Freely diffusing oxygen evolving catalysts for rechargeable Li–O2 batteries. Abstract for 16th International Meeting on Lithium Batteries, 2012, Jeju, Korea, S6-3 (2012).

  31. Amine, K., Chen, Z. & Wang, Q. Redox shuttles for overcharge protection of lithium batteries. US Patent 7,851,092 (2010).

  32. Chen, J., Buhrmester, C. & Dahn, J. R. Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem. Solid State Lett. 8, A59–A62 (2005).

    Article  CAS  Google Scholar 

  33. Bard, A. J. & Faulkner, L. R. in Electrochemical Methods. Fundamentals and Applications 811–812 (Wiley, 2000).

    Google Scholar 

  34. Chen, Y., Freunberger, S. A., Peng, Z., Barde, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    Article  CAS  Google Scholar 

  35. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011)

    Article  CAS  Google Scholar 

  36. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Article  CAS  Google Scholar 

  37. Wang, H. & Xie, K. Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries. Electrochim. Acta 64, 29–34 (2012).

    Article  CAS  Google Scholar 

  38. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2012).

    Article  Google Scholar 

  39. Trahan, M. J., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Studies of Li–air cells utilizing dimethylsulfoxide-based electrolyte. J. Electrochem. Soc. 160, A259–A267 (2013).

    Article  CAS  Google Scholar 

  40. McCloskey, B. D. et al. Limitations in rechargeability of Li–O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047, (2012).

    Article  CAS  Google Scholar 

  41. Sawyer, D. T., Chlericato, G., Angelis, C. T., Nanni, E. J. & Tsuchiya, T. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 54, 1720–1724 (1982).

    Article  CAS  Google Scholar 

  42. Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    Article  CAS  Google Scholar 

  43. Woods, R. in Electroanalytical Chemistry, A Series of Advances Vol. 9 (ed. Bard, A. J.) 124–125 (Marcel Dekker, 1976).

    Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the Engineering and Physical Sciences Research Council, including Supergen, for financial support. The authors thank K. Dholaki, C. Thomson and P. Ashok for assistance with the SERS equipment.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and S.A.F. contributed equally to this work and carried out the experiments. Y.C. and Z.P. measured SERS. P.G.B. wrote the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary informatio (PDF 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Freunberger, S., Peng, Z. et al. Charging a Li–O2 battery using a redox mediator. Nature Chem 5, 489–494 (2013). https://doi.org/10.1038/nchem.1646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing