Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing the biophysical interplay between a viral genome and its capsid

Abstract

The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo–capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay between cargo and capsid for the picorna-like Triatoma virus using a combined native mass spectrometry and atomic force microscopy approach. We propose a topology and assembly model in which heterotrimeric pentons that consist of five copies of structural proteins VP1, VP2 and VP3 are the free principal units of assembly. The interpenton contacts are established primarily by VP2. The dual role of the genome is first to stabilize the densely packed virion and, second, on an increase in pH to trigger uncoating by relaxing the stabilizing interactions with the capsid. Uncoating occurs through a labile intermediate state of the virion that reversibly disassembles into pentons with the concomitant release of protein VP4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alkaline-triggered uncoating of TrV monitored by native MS.
Figure 2: Native MS-based topology model of TrV.
Figure 3: A mechanical basis for alkaline-triggered uncoating of TrV.
Figure 4: Schematic of the alkaline-triggered uncoating of TrV.

Similar content being viewed by others

References

  1. Speir, J. A. & Johnson, J. E. Nucleic acid packaging in viruses. Curr. Opin. Struct. Biol. 22, 65–71 (2012).

    Article  CAS  Google Scholar 

  2. Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  Google Scholar 

  3. Mateu, M. G. Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res. 168, 1–22 (2012).

    Article  CAS  Google Scholar 

  4. Morton, V. L., Stockley, P. G., Stonehouse, N. J. & Ashcroft, A. E. Insights into virus capsid assembly from non-covalent mass spectrometry. Mass Spectrom. Rev. 27, 575–595 (2008).

    Article  Google Scholar 

  5. Roos, W. H., Bruinsma, R. & Wuite, G. J. L. Physical virology. Nature Phys. 6, 733–743 (2010).

    Article  CAS  Google Scholar 

  6. Uetrecht, C. & Heck, A. J. R. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew. Chem. Int. Ed. 50, 8248–8262 (2011).

    Article  CAS  Google Scholar 

  7. Uetrecht, C., Barbu, I. M., Shoemaker, G. K., Van Duijn, E. & Heck, A. J. R. Interrogating viral capsid assembly with ion mobility mass spectrometry. Nature Chem. 3, 126–132 (2011).

    Article  CAS  Google Scholar 

  8. Bonning, B. C. & Miller, W. A. Dicistroviruses. Ann. Rev. Entomol. 55, 129–150 (2010).

    Article  CAS  Google Scholar 

  9. Marti, G. A. et al. Prevalence and distribution of parasites and pathogens of Triatominae from Argentina, with emphasis on Triatoma infestans and Triatoma virus TrV. J. Invertebr. Pathol. 102, 233–237 (2009).

    Article  Google Scholar 

  10. Muscio, O. A., La Torre, J. L., Bonder, M. A. & Scodeller, E. A. Triatoma virus pathogenicity in laboratory colonies of Triatoma infestans (Hemiptera: Reduviidae). J. Med. Entomol. 34, 253–256 (1997).

    Article  CAS  Google Scholar 

  11. Rassi, A. Jr, Rassi, A. & Marin-Neto, J. A. Chagas disease. Lancet 375, 1388–1402 (2010).

    Article  Google Scholar 

  12. Muscio, O. A., La Torre, J. L. & Scodeller, E. A. Characterization of Triatoma virus, a picorna-like virus isolated from the triatomine bug Triatoma infestans. J. Gen. Virol. 69, 2929–2934 (1988).

    Article  CAS  Google Scholar 

  13. Czibener, C., La Torre, J. L., Muscio, O. A., Ugalde, R. A. & Scodeller, E. A. Nucleotide sequence analysis of Triatoma virus shows that it is a member of a novel group of insect RNA viruses. J. Gen. Virol. 81, 1149–1154 (2000).

    Article  CAS  Google Scholar 

  14. Agirre, J. et al. Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409, 91–101 (2011).

    Article  CAS  Google Scholar 

  15. Tate, J. et al. The crystal structure of cricket paralysis virus: the first view of a new virus family. Nature Struct. Biol. 6, 765–774 (1999).

    Article  CAS  Google Scholar 

  16. Kumar, S. & Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157, 175–188 (2005).

    Article  CAS  Google Scholar 

  17. Schaub, G. A. in Advances in Insect Physiology (eds Simpson, S. J. and Casas, J) Ch. 4, 177–242 (Academic Press, 2009).

    Google Scholar 

  18. Oliveira, M. F. et al. Heme crystallization in the midgut of triatomine insects. Comp. Biochem. Physiol. C 146, 168–174 (2007).

    Google Scholar 

  19. Stiebler, R. et al. On the physico-chemical and physiological requirements of hemozoin formation promoted by perimicrovillar membranes in Rhodnius prolixus midgut. Insect Biochem. Mol. Biol. 40, 284–292 (2010).

    Article  CAS  Google Scholar 

  20. Kollien, A. H., Grospietsch, T., Kleffmann, T., Zerbst-Boroffka, I. & Schaub, G. A. Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J. Insect Physiol. 47, 739–747 (2001).

    Article  CAS  Google Scholar 

  21. Muscio, O., Bonder, M. A., La Torre, J. L. & Scodeller, E. A. Horizontal transmission of Triatoma virus through the fecal–oral route in Triatoma infestans (Hemiptera: Triatomidae). J. Med. Entomol. 37, 271–275 (2000).

    Article  CAS  Google Scholar 

  22. Li, C., Wang, J. C., Taylor, M. W. & Zlotnick, A. In vitro assembly of an empty picornavirus capsid follows a dodecahedral path. J. Virol. 86, 13062–13069 (2012).

    Article  CAS  Google Scholar 

  23. Benesch, J. L. P. Collisional activation of protein complexes: picking up the pieces. J. Am. Soc. Mass Spectrom. 20, 341–348 (2009).

    Article  CAS  Google Scholar 

  24. Benesch, J. L. P., Ruotolo, B. T., Simmons, D. A. & Robinsons, C. V. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007).

    Article  CAS  Google Scholar 

  25. Uetrecht, C., Rose, R. J., Van Duijn, E., Lorenzen, K. & Heck, A. J. R. Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010).

    Article  CAS  Google Scholar 

  26. Ruotolo, B. T., Benesch, J. L. P., Sandercock, A. M., Hyung, S. & Robinson, C. V. Ion mobility mass spectrometry analysis of large protein complexes. Nature Protocols 3, 1139–1152 (2008).

    Article  CAS  Google Scholar 

  27. Evilevitch, A. et al. Effects of salts on internal DNA pressure and mechanical properties of phage capsids. J. Mol. Biol. 405, 18–23 (2011).

    Article  CAS  Google Scholar 

  28. Carrasco, C. et al. DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl Acad. Sci. USA 103, 13706–13711 (2006).

    Article  CAS  Google Scholar 

  29. Michel, J. P. et al. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl Acad. Sci. USA 103, 6184–6189 (2006).

    Article  CAS  Google Scholar 

  30. Estrozi, L. F. et al. Phasing of the Triatoma virus diffraction data using a cryo-electron microscopy reconstruction. Virology 375, 85–93 (2008).

    Article  CAS  Google Scholar 

  31. Castellanos, M., Pérez, R., Carrillo, P. J. P., De Pablo, P. J. & Mateu, M. G. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory. Biophys. J. 102, 2615–2624 (2012).

    Article  CAS  Google Scholar 

  32. Ojosnegros, S. et al. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genetics 7, e1001344 (2011).

    Article  CAS  Google Scholar 

  33. Fout, G. S., Medappa, K. C., Mapoles, J. E. & Rueckert, R. R. Radiochemical determination of polyamines in poliovirus and human rhinovirus 14. J. Biol. Chem. 259, 3639–3643 (1984).

    CAS  PubMed  Google Scholar 

  34. Roos, W. H. et al. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys. J. 99, 1175–1181 (2010).

    Article  CAS  Google Scholar 

  35. Bostina, M., Levy, H., Filman, D. J. & Hogle, J. M. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 85, 776–783 (2011).

    Article  CAS  Google Scholar 

  36. Agirre, J. et al. Cryo-TEM reconstructions of Triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J. Gen. Virol. http://dx.doi.org/10.1099/vir.0.048553-0 (2013).

  37. Muscio, O. A., LaTorre, J. L. & Scodeller, E. A. Small nonoccluded viruses from triatomine bug Triatoma infestans (Hemiptera: Reduviidae). J. Invertebr. Pathol. 49, 218–220 (1987).

    Article  CAS  Google Scholar 

  38. Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007).

    Article  CAS  Google Scholar 

  39. Van Den Heuvel, R. H. H. et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006).

    Article  CAS  Google Scholar 

  40. Tahallah, N., Pinkse, M., Maier, C. S. & Heck, A. J. R. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15, 596–601 (2001).

    Article  CAS  Google Scholar 

  41. Lorenzen, K., Versluis, C., van Duijn, E., van den Heuvel, R. H. H. & Heck, A. J. R. Optimizing macromolecular tandem mass spectrometry of large non-covalent complexes using heavy collision gases. Int. J. Mass Spectrom. 268, 198–206 (2007).

    Article  CAS  Google Scholar 

  42. Pringle, S. D. et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa–ToF instrument. Int J. Mass Spectrom. 261, 1–12 (2007).

    Article  CAS  Google Scholar 

  43. Bush, M. F. et al. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010).

    Article  CAS  Google Scholar 

  44. Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C. & Jarrold, M. F. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996).

    CAS  Google Scholar 

  45. Shvartsburg, A. A. & Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996).

    Article  CAS  Google Scholar 

  46. Uetrecht, C. et al. Stability and shape of hepatitis B virus capsids in vacuo. Angew. Chem. Int. Ed. 47, 6247–6251 (2008).

    Article  CAS  Google Scholar 

  47. Roos, W. H. How to perform a nanoindentation experiment on a virus. Methods Mol. Biol. 783, 251–264 (2011).

    Article  CAS  Google Scholar 

  48. Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  CAS  Google Scholar 

  49. Snijder, J., Ivanovska, I. L., Baclayon, M., Roos, W. H. & Wuite, G. J. L. Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43, 1343–1350 (2012).

    Article  CAS  Google Scholar 

  50. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.J.L.W. is supported by a NanoSci-E+ grant from FOM (Fundamenteel Onderzoek der Materie) under the ‘Physics of the Genome’ program and by a Vici grant from the Netherlands Organization for Scientific Research (NWO). J.S., C.U., R.J.R. and A.J.R.H. are supported by the Netherlands Proteomics Centre. A.J.R.H. is further supported by NWO under ALW-ECHO (819.02.10). R.S-E. is recipient of a predoctoral fellowship from the Basque Government (BG). G.A.M. is supported partially by PICT 2008-0035 and V188 (National University of La Plata). D.M.A.G. is supported by CYTED (Programa Internacional de Cooperación Científica y Tecnológica Multilateral) (209RT0364), by the BG (MV-2012-2-41; AE-2012-1-44, SPE1 1FB001) and by the Ministry of Science and Innovation (BFU2007-62062). We thank the Scientific Calculation Service of the UPV/EHU (SGIker) for computation resources. D.M.A.G. is visiting professor at the UPV/EHU.

Author information

Authors and Affiliations

Authors

Contributions

A.J.R.H., W.H.R., J.S. and D.M.A.G. conceptually conceived the research. G.A.M., J.A. and R.S-E. purified the virus samples. J.S., C.U., R.J.R. and A.J.R.H. performed and supervised the MS measurements. J.S. and W.H.R. performed and supervised the AFM measurements. R.S.E. and J.A. performed additional experiments. All authors contributed to interpreting the data and writing the paper. D.M.A.G., G.J.L.W. and A.J.R.H. supervised the work in the respective laboratories.

Corresponding authors

Correspondence to A. J. R. Heck or W. H. Roos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snijder, J., Uetrecht, C., Rose, R. et al. Probing the biophysical interplay between a viral genome and its capsid. Nature Chem 5, 502–509 (2013). https://doi.org/10.1038/nchem.1627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing