Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The use of elemental sulfur as an alternative feedstock for polymeric materials

Abstract

An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li–S batteries, exhibiting high specific capacity (823 mA h g−1 at 100 cycles) and enhanced capacity retention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elemental sulfur as a feedstock.
Figure 2: The copolymerization of S8 with DIB.
Figure 3: Transparent glass films of poly(S-r-DIB).
Figure 4: Thermal and rheological properties of poly(S-r-DIB).
Figure 5: Imprint lithography of poly(S-r-DIB) copolymers to form micropatterned films.
Figure 6: Electrochemical performance of 10-wt% DIB sulfur copolymer.

Similar content being viewed by others

References

  1. Kutney, G. Sulfur. History, Technology, Applications and Industry (ChemTec Publising, 2007).

    Google Scholar 

  2. Rauchfuss, T. B. Under sulfur's spell. Nature Chem. 3, 648 (2011).

    Article  CAS  Google Scholar 

  3. Angelici, R. J. Heterogeneous catalysis of the hydrodesulfurization of thiophenes in petroleum: an organometallic perspective of the mechanism. Acc. Chem. Res. 21, 387–394 (1988).

    Article  CAS  Google Scholar 

  4. Meyer, C. & Kharasch, N. Elemental Sulfur: Chemistry and Physics (Interscience Publishers, 1965).

    Google Scholar 

  5. Wang, J. L. et al. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Func. Mater. 13, 487–492 (2003).

    Article  CAS  Google Scholar 

  6. Song, M-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).

    Article  CAS  Google Scholar 

  7. Kiya, Y., Iwata, A., Sarukuwa, T., Henderson, J. C. & Abruna, H. D. Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)–poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high energy lithium/lithium ion rechargable batteries. J. Power Sources 173, 522–530 (2007).

    Article  CAS  Google Scholar 

  8. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  9. Choi, Y-J. et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J. Power Sources 184, 548–552 (2008).

    Article  CAS  Google Scholar 

  10. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

    Article  CAS  Google Scholar 

  11. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    Article  CAS  Google Scholar 

  12. Wu, F., Wu, S., Chen, R., Chen, J. & Chen, S. Sulfur–polythiophene composite cathode materials for rechargeable lithium batteries. Electrochem. Solid-State Lett. 13, A29–A31 (2010).

    Article  CAS  Google Scholar 

  13. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    Article  CAS  Google Scholar 

  14. Wang, H. et al. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011).

    Article  CAS  Google Scholar 

  15. Wu, F. et al. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057–6063 (2011).

    Article  CAS  Google Scholar 

  16. Yu, G. et al. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011).

    Article  CAS  Google Scholar 

  17. Okutsu, R., Ando, S. & Ueda, M. Sulfur-containing poly(meth)acrylates with high refractive indices and high Abbe's numbers. Chem. Mater. 20, 4017–4023 (2008).

    Article  CAS  Google Scholar 

  18. Liu, J-G. & Ueda, M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19, 8907–8919 (2009).

    Article  CAS  Google Scholar 

  19. Boros, E. et al. On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium, and phosphorous) in ionic liquids. Chem. Commun. 46, 716–718 (2010).

    Article  CAS  Google Scholar 

  20. Penczek, S., Slazak, R. & Duda, A. Anionic copolymerization of elemental sulfur. Nature 273, 738–739 (1978).

    Article  CAS  Google Scholar 

  21. Duda, A. & Penczek, S. Anionic copolymerization of elemental sulfur with 2,2-dimethylthiirane. Makromol. Chem. Macromol. Chem. Phys. 181, 995–1001 (1980).

    Article  CAS  Google Scholar 

  22. Blight, L. B., Currell, B. R., Nash, B. J., Scott, T. M. & Stillo, C. Chemistry of the modification of sulphur by the use of dicyclopentadiene and of styrene. Br. Polym. J. 5–11 (1980).

  23. Tsuda, T. & Takeda, A. Palladium-catalysed cycloaddition copolymerisation of diynes with elemental sulfur to poly(thiophene)s. Chem. Commun. 1317–1318 (1996).

  24. Ding, Y. & Hay, A. S. Copolymerization of elemental sulfur with cyclic (arylene disulfide) oligomers. J. Polym. Sci. A 35, 2961–2968 (1997).

    Article  CAS  Google Scholar 

  25. Chung, W-J. et al. Elemental sulfur as a reactive medium for gold nanoparticles and nanocomposite materials. Angew. Chem. Int. Ed. 50, 11409–11412 (2011).

    Article  CAS  Google Scholar 

  26. Calatldo, F. A study on the structure and properties of polymeric sulfur. Die Angew. Makromol. Chem. 249, 137–149 (1997).

    Article  Google Scholar 

  27. Hong, Y. et al. A novel processing aid for polymer extrusion: rheology and processing of polyethylene and hyperbranched polymer blends. J. Rheol. 43, 781–793 (1999).

    Article  CAS  Google Scholar 

  28. Leibfarth, F. A. et al. A facile route to ketene-functionalized polymers for general materials applications. Nature Chem. 2, 207–212 (2010).

    Article  CAS  Google Scholar 

  29. Gupta, N. et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chem. 2, 138–145 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the University of Arizona (UA), Arizona Research Institute for Solar Energy, the World Class University Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10013), the Laboratory for Electrochemical Energy at the UA and the American Chemical Society Petroleum Research Fund (51026-ND10) for support of this work. K.C. acknowledges financial support from the National Research Foundation for the National Creative Research Initiative Center for Intelligent Hybrids (2010-0018290). Y-E.S. acknowledges financial support from the Korean Ministry of Education, Science and Technology through the Institute of Basic Science Program.

Author information

Authors and Affiliations

Authors

Contributions

W.J.C., J.J.G., E.T.K., H.S.Y., R.S.G., P.T., Y-E.S., K.C. and J.P. developed the concept and conceived the experiments. J.J.G., E.T.K., W.J.C., A.G.S., P.T.D., H.J.J., J.J.P., A.S. and H.S.Y. performed the laboratory experiments and analysed the results. J.J.W., N.A.N., B.W.G. and M.E.M. provided support for polymer characterization. W.J.C., K.C. and J.P. co-wrote the manuscript.

Corresponding authors

Correspondence to Yung-Eun Sung, Kookheon Char or Jeffrey Pyun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, W., Griebel, J., Kim, E. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chem 5, 518–524 (2013). https://doi.org/10.1038/nchem.1624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing