Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional RNAs exhibit tolerance for non-heritable 2′–5′ versus 3′–5′ backbone heterogeneity

Abstract

A plausible process for non-enzymatic RNA replication would greatly simplify models of the transition from prebiotic chemistry to simple biology. However, all known conditions for the chemical copying of an RNA template result in the synthesis of a complementary strand that contains a mixture of 2′–5′ and 3′–5′ linkages, rather than the selective synthesis of only 3′–5′ linkages as found in contemporary RNA. Here we show that such backbone heterogeneity is compatible with RNA folding into defined three-dimensional structures that retain molecular recognition and catalytic properties and, therefore, would not prevent the evolution of functional RNAs such as ribozymes. Moreover, the same backbone heterogeneity lowers the melting temperature of RNA duplexes that would otherwise be too stable for thermal strand separation. By allowing copied strands to dissociate, this heterogeneity may have been one of the essential features that allowed RNA to emerge as the first biopolymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA is enzymatically synthesized with complete regiospecificity to generate a uniform 3′–5′ phosphodiester backbone, but prebiotically plausible non-enzymatic syntheses of RNA result in backbone heterogeneity, and a randomly distributed mixture of 3′–5′ and 2′–5′ linkages.
Figure 2: A pool of FMN aptamers that contains moderate levels of 2′–5′ linkages is observed to retain FMN-binding activity.
Figure 3: A pool of hammerhead ribozymes that contains up to 25% randomly distributed 2′–5′ linkages is observed to retain catalytic activity.
Figure 4: An RNA duplex containing 14% 2′–5′ linkages is observed to denature at a temperature at least 15 °C lower than that for the corresponding homogeneous 3′–5′-linked duplex, which facilitates thermal strand separation under geochemically plausible conditions.

Similar content being viewed by others

References

  1. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  2. Joyce, G. F. RNA evolution and the origins of life. Nature 338, 217–224 (1989).

    Article  CAS  Google Scholar 

  3. Joyce, G. F. & Orgel, L. E. in The RNA World 2nd edn (eds R. F. Gesteland & J. F. Atkins) 49–77 (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

  4. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Ångstrom resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  5. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  6. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  CAS  Google Scholar 

  7. Powner, M. W., Sutherland, J. D. & Szostak, J. W. Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 132, 16677–16688 (2010).

    Article  CAS  Google Scholar 

  8. Powner, M. W. & Sutherland, J. D. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew. Chem. Int. Ed. 49, 4641–4643 (2010).

    Article  CAS  Google Scholar 

  9. Ferris, J. P. Jr, Hill, A. R., Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).

    Article  CAS  Google Scholar 

  10. Kanavarioti, A., Monnard, P-A. & Deamer, D. W. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1, 271–281 (2001).

    Article  CAS  Google Scholar 

  11. Hill, A. J., Orgel, L. & Wu, T. The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl)imidazolides. Origins Life Evol. Biospheres 23, 285–290 (1993).

    Article  CAS  Google Scholar 

  12. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  CAS  Google Scholar 

  13. Deck, C., Jauker, M. & Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chem. 3, 603–608 (2011).

    Article  CAS  Google Scholar 

  14. Szostak, J. W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 3, 2 doi:10.1186/1759-2208-3-2 (2012).

    Article  CAS  Google Scholar 

  15. Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA 84, 4398–4402 (1987).

    Article  CAS  Google Scholar 

  16. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  17. Richert, C., Roughton, A. L. & Benner, S. A. Nonionic analogs of RNA with dimethylene sulfone bridges. J. Am. Chem. Soc. 118, 4518–4531 (1996).

    Article  CAS  Google Scholar 

  18. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  Google Scholar 

  19. Chaput, J. C. & Switzer, C. Nonenzymatic oligomerization on templates containing phosphodiester-linked acyclic glycerol nucleic acid analogues. J. Mol. Evol. 51, 464–470 (2000).

    Article  CAS  Google Scholar 

  20. Bean, H. D., Anet, F. A. L., Gould, I. R. & Hud, N. V. Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Origins Life Evol. Biospheres 36, 39–63 (2006).

    Article  CAS  Google Scholar 

  21. Chen, J. J., Cai, X. & Szostak, J. W. N2′→P3′ phosphoramidate glycerol nucleic acid as a potential alternative genetic system. J. Am. Chem. Soc. 131, 2119–2121 (2009).

    Article  CAS  Google Scholar 

  22. Engelhart, A. E. & Hud, N. V. Primitive genetic polymers. Cold Spring Harbor Perspect. Biol. 2, doi:10.1101/cshperspect.a002196 (2010).

  23. Usher, D. A. & McHale, A. H. Hydrolytic stability of helical RNA – selective advantage for the natural 3′,5′-bond. Proc. Natl Acad. Sci. USA 73, 1149–1153 (1976).

    Article  CAS  Google Scholar 

  24. Bridson, P. K. & Orgel, L. E. Catalysis of accurate poly(C)-directed synthesis of 3′–5′-linked oligoguanylates by Zn2+. J. Mol. Biol. 144, 567–577 (1980).

    Article  CAS  Google Scholar 

  25. Inoue, T. & Orgel, L. E. Oligomerization of (guanosine-5′-phosphor)-2-methylimidazole on poly(C) – an RNA-polymerase model. J. Mol. Biol. 162, 201–217 (1982).

    Article  CAS  Google Scholar 

  26. Rohatgi, R., Bartel, D. P. & Szostak, J. W. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′–5′ phosphodiester bonds. J. Am. Chem. Soc. 118, 3340–3344 (1996).

    Article  CAS  Google Scholar 

  27. Ekland, E. H. & Bartel, D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–376 (1996).

    Article  CAS  Google Scholar 

  28. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001).

    Article  CAS  Google Scholar 

  29. Prakash, T. P., Roberts, C. & Switzer, C. Activity of 2′,5′-linked RNA in the template-directed oligomerization of mononucleotides. Angew. Chem. Int. Ed. Engl. 36, 1522–1523 (1997).

    Article  CAS  Google Scholar 

  30. Trevino, S. G., Zhang, N., Elenko, M. P., Luptak, A. & Szostak, J. W. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity. Proc. Natl Acad. Sci. USA 108, 13492–13497 (2011).

    Article  CAS  Google Scholar 

  31. Giannaris, P. A. & Damha, M. J. Oligoribonucleotides containing 2′,5′-phosphodiester linkages exhibit binding selectivity for 3′,5′-RNA over 3′,5′-ssDNA. Nucleic Acids Res. 21, 4742–4749 (1993).

    Article  CAS  Google Scholar 

  32. Wasner, M. et al. Physicochemical and biochemical properties of 2′,5′-linked RNA and 2′,5′-RNA:3′,5′-RNA ‘hybrid’ duplexes. Biochemistry 37, 7478–7486 (1998).

    Article  CAS  Google Scholar 

  33. Burgstaller, P. & Famulok, M. Isolation of RNA aptamers for biological cofactors by in-vitro selection. Angew. Chem. Int. Ed. Engl. 33, 1084–1087 (1994).

    Article  Google Scholar 

  34. Fan, P., Suri, A. K., Fiala, R., Live, D. & Patel, D. J. Molecular recognition in the FMN–RNA aptamer complex. J. Mol. Biol. 258, 480–500 (1996).

    Article  CAS  Google Scholar 

  35. Birikh, K. R., Heaton, P. A. & Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 245, 1–16 (1997).

    Article  CAS  Google Scholar 

  36. Hiraki, S. & Orgel, L. E. Oligonucleotide synthesis catalyzed by the Zn2+ ion. J. Am. Chem. Soc. 97, 3532–3533 (1975).

    Article  Google Scholar 

  37. Burlina, F., Fourrey, J., Lefort, V. & Favre, A. Cleavage activity of a hammerhead ribozyme domain containing 2′,5′-phosphodiester linkages. Tetrahedron Lett. 40, 4559–4562 (1999).

    Article  CAS  Google Scholar 

  38. Shih, I. & Been, M. D. Ribozyme cleavage of a 2′,5′-phosphodiester linkage: mechanism and a restricted divalent metal-ion requirement. RNA 5, 1140–1148 (1999).

    Article  CAS  Google Scholar 

  39. Lorsch, J. R., Bartel, D. P. & Szostak, J. W. Reverse transcriptase reads through a 2′–5′ linkage and a 2′-thiophosphate in a template. Nucleic Acids Res. 23, 2811–2814 (1995).

    Article  CAS  Google Scholar 

  40. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  Google Scholar 

  41. Ricardo, A. & Szostak, J. W. Life on earth. Sci Am 301, 54–61 (2009).

    Article  CAS  Google Scholar 

  42. Budin, I. & Szostak, J. W. Expanding roles for diverse physical phenomena during the origin of life. Annu. Rev. Biophys. 39, 245–263 (2010).

    Article  CAS  Google Scholar 

  43. Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).

    Article  CAS  Google Scholar 

  44. Qu, X. G. & Chaires, J. B. Analysis of drug–DNA binding data. Method. Enzymol. 321, 353–369 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.W.S. is an Investigator of the Howard Hughes Medical Institute (HHMI). A.E.E. is supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. M.W.P. was an HHMI Research Associate. This work was supported in part through NSF Grant CHE-0809413 to J.W.S. We thank J. Craig Blain for oligonucleotide mass spectrometry, K. Adamala for advice with RNA melting experiments and N. Prywes for helpful discussions and assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments and to writing the paper. Experiments were conducted by A.E.E. and M.W.P.

Corresponding author

Correspondence to Jack W. Szostak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhart, A., Powner, M. & Szostak, J. Functional RNAs exhibit tolerance for non-heritable 2′–5′ versus 3′–5′ backbone heterogeneity. Nature Chem 5, 390–394 (2013). https://doi.org/10.1038/nchem.1623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing