Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A diiron(iv) complex that cleaves strong C–H and O–H bonds

Abstract

The controlled cleavage of strong C–H bonds such as those of methane poses a significant and industrially important challenge for chemists. In nature, methane is oxidized to methanol by soluble methane monooxygenase via a diiron(iv) intermediate called Q. However, the only two reported diiron(iv) complexes have activities towards C–H bonds that fall far short of the activity of this biological catalyst. In this paper, we model the chemistry of MMO-Q by generating an oxo-bridged diiron(iv) complex by electrochemical oxidation. This species is a more effective oxidant. It can attack C–H bonds as strong as 100 kcal mol−1 and reacts with cyclohexane 100- to 1,000-fold faster than mononuclear FeIV=O complexes of closely related ligands. Strikingly, this species can also cleave the strong O–H bonds of methanol and t-butanol instead of their weaker C–H bonds, representing the first example of O–H bond activation for iron complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the complexes 1 and 3.
Figure 2: Characterization of complexes 1, 2 and 3.
Figure 3: X-ray absorption spectra of complexes 1, 2 and 3.
Figure 4: 4.2 K Mössbauer spectra of 3.
Figure 5: Oxidative reactivity study of 3 in CD3CN at 10 °C.
Figure 6: Reaction scheme of 3 in its oxidation of cyclohexane and t-butanol.

Similar content being viewed by others

References

  1. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2657 (1996).

    CAS  PubMed  Google Scholar 

  3. Merkx, M. et al. Dioxygen Activation and methane hydroxylation by soluble methane monooxygenase: A tale of two irons and three proteins. Angew. Chem. Int. Ed. 40, 2782–2807 (2001).

    CAS  Google Scholar 

  4. Balasubramanian, R. & Rosenzweig, A. C. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc. Chem. Res. 40, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S.-K., Fox, B. G., Froland, W. A., Lipscomb, J. D. & Münck, E. A transient intermediate of the methane monooxygenase catalytic cycle containing an FeIVFeIV cluster. J. Am. Chem. Soc. 115, 6450–6451 (1993).

    Article  CAS  Google Scholar 

  6. Liu, K. E. et al. Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 117, 10174–10185 (1995).

    Article  CAS  Google Scholar 

  7. Nesheim, J. C. & Lipscomb, J. D. Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: Evidence for C–H bond cleavage in a reaction cycle intermediate. Biochemistry 35, 10240–10247 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Shu, L. et al. An FeIV2O2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, A. et al. Catalytically active μ-oxodiiron(IV) oxidants from iron(III) and dioxygen. J. Am. Chem. Soc. 127, 2505–2513 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Xue, G. et al. A synthetic precedent for the [FeIV2(μ-O)2] diamond core proposed for methane monooxygenase intermediate Q. Proc. Natl Acad. Sci. USA 104, 20713–20718 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, J.-Y. et al. Iron(III) complexes with the ligand N′,N′-bis[(2-pyridyl)-methyl]ethylenediamine (uns-penp) and its amide derivative N-acetyl-N′,N′-bis[(2-pyridyl)methyl]ethylenediamine (acetyl-uns-penp). Eur. J. Inorg. Chem. 1601–1610 (2006).

    Article  Google Scholar 

  12. Kurtz, D. M. Jr Oxo- and hydroxo-bridged diiron complexes: A chemical perspective on a biological unit. Chem. Rev. 90, 585–606 (1990).

    Article  CAS  Google Scholar 

  13. Slep, L. D. et al. Mixed-valent {FeIV(μ-O)(μ-carboxylato)2FeIII}3+ core. J. Am. Chem. Soc. 125, 15554–15570 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Norman, R. E. et al. (μ-Oxo)(μ-carboxylato)diiron(III) complexes with distinct iron sites. Consequences of the inequivalence and its relevance to dinuclear iron–oxo proteins. J. Am. Chem. Soc. 112, 1554–1562(1990).

    Article  CAS  Google Scholar 

  15. Jackson, T. A. et al. Axial ligand effects on the geometric and electronic structures of nonheme oxoiron(IV) complexes. J. Am. Chem. Soc. 130, 12394–12407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rohde, J. U. et al. Nonheme oxoiron(IV) complexes of tris(2-pyridylmethyl)amine with cis-monoanionic ligands. Inorg. Chem. 45, 6435–6445 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Collins, M. J., Ray, K. & Que, L. Jr Electrochemical generation of a nonheme oxoiron(IV) complex. Inorg. Chem. 45, 8009–8011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaizer, J. et al. Nonheme FeIVO complexes that can oxidize the C–H bonds of cyclohexane at room temperature. J. Am. Chem. Soc. 126, 472–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, D., de Visser, S. P., Sharma, P. K., Cohen, S. & Shaik, S. Radical clock substrates, their C–H hydroxylation mechanism by cytochrome P450, and other reactivity patterns: What does theory reveal about the clocks' behaviour? J. Am. Chem. Soc. 126, 1907–1920 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, D., de Visser, S. P. & Shaik, S. Oxygen economy of cytochrome P450: What is the origin of the mixed functionality as a dehydrogenase-oxidase enzyme compared with its normal function? J. Am. Chem. Soc. 126, 5072–5073 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Jin, Y. & Lipscomb, J. D. Desaturation reactions catalyzed by soluble methane monooxygenase. J. Biol. Inorg. Chem. 6, 717–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Griller, D. & Ingold, K. U. Free-radical clocks. Acc. Chem. Res. 13, 317–323 (1980).

    Article  CAS  Google Scholar 

  23. Vollhardt, K. P. C. The reactions of alcohols and the chemistry of ethers, in Organic Chemistry 308–358 (W. H. Freeman, 1987).

  24. Luo, Y.-R. in Comprehensive Handbook of Chemical Bond Energies 255–369 (Taylor & Francis, 2007).

  25. Pestovsky, O. & Bakac, A. Reactivity of aqueous fe(IV) in hydride and hydrogen atom transfer reactions. J. Am. Chem. Soc. 126, 13757–13764 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pestovsky, O. et al. Aqueous : Spectroscopic identification and oxo group exchange. Angew. Chem. Int. Ed. 44, 6871–6874 (2005).

    CAS  Google Scholar 

  27. Jacobsen, F., Holcman, J. & Sehested, K. Reactions of the ferryl ion with some compounds found in cloud water. Int. J. Chem. Kinet. 30, 215–221 (1998).

    Article  CAS  Google Scholar 

  28. Shaik, S., Hirao, H. & Kumar, D. Reactivity of high-valent iron–oxo species in enzymes and synthetic reagents: A tale of many states. Acc. Chem. Res. 40, 532–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sastri, C. V. et al. Axial ligand tuning of a nonheme iron(IV)–oxo unit for hydrogen atom abstraction. Proc. Natl Acad. Sci. USA 104, 19181–19186 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Decker, A. et al. Spectroscopic and quantum chemical studies on low-spin complexes: Fe–O bonding and its contributions to reactivity. J. Am. Chem. Soc. 129, 15983–15996 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernasconi, L., Louwerse, M. J. & Baerends, E. J. The role of equatorial and axial ligands in promoting the activity of non-heme oxidoiron(IV) catalysts in alkane hydroxylation. Eur. J. Inorg. Chem. 3023–3033 (2007).

  32. Klinker, E. J. High-valent iron compounds supported by pentadentate ligands. PhD thesis, Univ. Minnesota–Twin Cities (2007).

  33. Berben, L. A. & Peters, J. C. Dimanganese and diiron complexes of a binucleating cyclam ligand: Four-electron, reversible oxidation chemistry at high potentials. Inorg. Chem. 47, 11669–11679 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Berry, J. F., Bill, E., Bothe, E., Neese, F. & Wieghardt, K. Octahedral non-heme oxo and non-oxo Fe(IV) complexes: An experimental/theoretical comparison. J. Am. Chem. Soc. 128, 13515–13528 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Zheng, H., Yoo, S. J., Münck, E. & Que, L. Jr The flexible Fe2(μ-O)2 diamond core: A terminal iron(IV)–oxo species generated from the oxidation of a bis(μ-oxo)diiron(III) complex. J. Am. Chem. Soc. 122, 3789–3790 (2000).

    Article  CAS  Google Scholar 

  36. Brazeau, B. J. & Lipscomb, J. D. Kinetics and thermodynamics of methane monooxygenase compound Q formation and reaction with substrates. Biochemistry 39, 13503–13515 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Valentine, A. M., Stahl, S. S. & Lippard, S. J. Mechanistic studies of the reaction of reduced methane monooxgyenase hydroxylase with dioxygen and substrates. J. Am. Chem. Soc. 121, 3876–3887 (1999).

    Article  CAS  Google Scholar 

  38. Fox, B. G., Lyle, K. S. & Rogge, C. E. Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc. Chem. Res. 37, 421–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Luo, Y.-R. in Comprehensive Handbook of Chemical Bond Energies 19–147 (Taylor & Francis, 2007).

Download references

Acknowledgements

This work was supported by NIH Grants EB-001475 (E.M.) and GM-38767 (L.Q.) and NIH Graduate Traineeship GM-08700 (E.R.F.). XAS data were collected on beamlines 7-3 and 9-3 at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Centre for Research Resources and the Biomedical Technology Program. We thank M. Latimer and A. Aranda for technical support and advice during XAS data collection. We also thank V.G. Young Jr and the X-ray Crystallographic Laboratory of the University of Minnesota for expert assistance in the crystal structure determination.

Author information

Authors and Affiliations

Authors

Contributions

D.W., E.M. and L.Q. conceived and designed the experiments; D.W., E.R.F. and A.S. performed the experiments; D.W., E.R.F., A.S. and E.M. analysed the data; D.W., E.R.F., A.S., E.M. and L.Q. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Eckard Münck or Lawrence Que Jr.

Supplementary information

Supplementary information

Supplementary information (PDF 738 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Farquhar, E., Stubna, A. et al. A diiron(iv) complex that cleaves strong C–H and O–H bonds. Nature Chem 1, 145–150 (2009). https://doi.org/10.1038/nchem.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing