Article | Published:

The essential role of charge-shift bonding in hypervalent prototype XeF2

Nature Chemistry volume 5, pages 417422 (2013) | Download Citation

  • An Erratum to this article was published on 20 November 2015

This article has been updated

Abstract

Hypervalency in XeF2 and isoelectronic complexes is generally understood in terms of the Rundle–Pimentel model (which invokes a three-centre/four-electron molecular system) or its valence bond version as proposed by Coulson, which replaced the old expanded octet model of Pauling. However, the Rundle–Pimentel model is not always successful in describing such complexes and has been shown to be oversimplified. Here using ab initio valence bond theory coupled to quantum Monte Carlo methods, we show that the Rundle–Pimentel model is insufficient by itself in accounting for the great stability of XeF2, and that charge-shift bonding, wherein the large covalent–ionic interaction energy has the dominant role, is a major stabilizing factor. The energetic contribution of the old expanded octet model is also quantified and shown to be marginal. Generalizing to isoelectronic systems such as ClF3, SF4, PCl5 and others, it is suggested that charge-shift bonding is necessary, in association with the Rundle–Pimentel model, for hypervalent analogues of XeF2 to be strongly bonded.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 09 October 2015

    This Article was accepted on 28 February 2013. This information appeared incorrectly in the original versions of this Article and has now been corrected in the online versions.

References

  1. 1.

    Xenon hexafluoroplatinate (V) Xe+PtF6. Proc. Chem. Soc. Lond. 218 (1962).

  2. 2.

    , , & Fluorierung von Xenon. Angew Chem. 74, 903 (1962).

  3. 3.

    The Nature of the Chemical Bond 2nd edn, 145 (Cornell Univ. Press, 1940).

  4. 4.

    E Probable structure of XeF4 and XeF2. J. Am. Chem. Soc. 85, 112–113 (1963).

  5. 5.

    Bonding in xenon fluorides and halogen fluorides. Science 139, 414 (1963).

  6. 6.

    Chemical bonding in higher main group elements. Angew Chem. Int. Ed. 23, 272–295 (1984).

  7. 7.

    , , & The chemistry of xenon. Chem. Rev. 65, 199–236 (1965).

  8. 8.

    & Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation. J. Am. Chem. Soc. 112, 1434–1445 (1990).

  9. 9.

    The chemistry of hypervalent molecules. Angew. Chem. Int. Ed. 8, 54–68 (1969).

  10. 10.

    & On the role of d orbitals in SF6. J. Am. Chem. Soc. 108, 3586–3593 (1986).

  11. 11.

    & The structure of tetramethylammonium pentaiodide. J. Am. Chem. Soc. 73, 4321–4324 (1951).

  12. 12.

    The bonding of trihalide and bifluoride ions by the molecular orbital method. J. Chem. Phys. 19, 446–448 (1951).

  13. 13.

    & Electron-rich three-center bonding: role of s,p interactions across the p-block. J. Am. Chem. Soc. 124, 4787–4795 (2002).

  14. 14.

    The nature of the bonding in xenon fluorides and related molecules. J. Chem. Soc. 1442–1454 (1964).

  15. 15.

    , & Enthalpy of formation of xenon difluoride. Zh. Fiz. Khim. 43, 1564 (1969).

  16. 16.

    (ed.) Handbook of Chemistry and Physics 70th edn (CRC Press, 1989).

  17. 17.

    , , , & The vibrational spectra of krypton and xenon difuorides—high-resolution infrared studies and ab initio calculations. J. Chem. Phys. 101, 1–14 (1994).

  18. 18.

    , , , & Charge-shift bonding—a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem. Eur. J. 11, 6358–6371 (2005).

  19. 19.

    , , & Charge-shift bonding and its manifestations in chemistry. Nature Chem. 1, 443–449 (2009).

  20. 20.

    & Molecular Spectra and Molecular Structures Vol. 4 (van Nostrand Reinhold, 1979).

  21. 21.

    & Breathing-orbital valence bond method—a modern valence bond method that includes dynamic correlation. Theor. Chem. Acc. 108, 255–272 (2002).

  22. 22.

    , , & Quantum Monte Carlo with Jastrow-valence-bond wave functions. J. Chem. Phys. 134, 084108 (2011).

  23. 23.

    , & Approaching chemical accuracy with quantum Monte Carlo. J. Chem. Phys. 136, 124116 (2012).

  24. 24.

    , , & Electron correlation and the reality of xenon difluoride. J. Am. Chem. Soc. 97, 7216–7219 (1975).

  25. 25.

    , , & Relativistic all-electron Dirac–Fock–Breit calculations on xenon fluorides (XeFn, n = 1, 2, 4, 6). J. Comput. Chem. 18, 601–608 (1997).

  26. 26.

    & Chemical bonding in XeF2, XeF4, KrF2, KrF4, RnF2, XeCl2, and XeBr2: from the gas phase to the solid state. J. Phys. Chem. A 102, 10647–10654 (1998).

  27. 27.

    , , , & Heats of formation of xenon fluorides and the fluxionality of XeF6 from high level electronic structure calculations. J. Am. Chem. Soc. 127, 8627–8634 (2005).

  28. 28.

    , & A theoretical study on the XeF2 molecule. Chem. Phys. 348, 89–96 (2008).

  29. 29.

    & Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n = 2, 4, 6). J. Chem. Phys. 122, 214302 (2005).

  30. 30.

    , , , & The Structure of XeF6 and of compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J. Am. Chem. Soc. 118, 11939–11950 (1996).

  31. 31.

    , , & Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F) at large compression. Inorg. Chem. 50, 3832–3840 (2011).

  32. 32.

    , & The xenon–fluorine system. Inorg. Chem. 5, 2189–2203 (1966).

  33. 33.

    , , , & Photoionization mass spectrometric study of XeF2, XeF4, and XeF6. J. Phys. Chem. 75, 1461–1471 (1971).

  34. 34.

    & Bond dissociation energy and Lewis acidity of the xenon fluoride cation. Inorg. Chem. 42, 4293–4298 (2003).

  35. 35.

    & What makes the trifluoride anion F3 so special? A breathing-orbital valence bond ab initio study. J. Am. Chem. Soc. 126, 14890–14898 (2004).

  36. 36.

    & A Chemist's Guide to Valence Bond Theory 142 (Wiley, 2008).

  37. 37.

    in An Encomium to Linus Pauling. Molecules in Natural Science and Medicine (eds Maksic, Z. B. & Maksic, M. E.) 253–266 (Ellis Horwood, 1991).

  38. 38.

    & VB diagrams and chemical reactivity. Angew Chem. Int. Ed. 38, 586–625 (1999).

  39. 39.

    & The electronic structure of conjugated systems. VI. Proc. R. Soc. Lond. A 201, 196–209 (1950).

  40. 40.

    & A survey of recent developments in ab initio valence bond theory. J. Comput. Chem. 28, 137–151 (2007).

  41. 41.

    & The valence-bond self-consistent field method (VB–SCF): theory and test calculations. J. Chem. Phys. 78, 5699–5713 (1983).

  42. 42.

    , , & XMVB: an ab initio non-orthogonal valence bond program (Xiamen University, 2003).

  43. 43.

    , , & XMVB: a program for ab initio nonorthogonal valence bond computations. J. Comput. Chem. 26, 514–521 (2005).

  44. 44.

    , , & An efficient algorithm for energy gradients and orbital optimization in valence bond theory. J. Comput. Chem. 30, 399–406 (2009).

  45. 45.

    , & Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J. Chem. Phys. 126, 234105 (2007).

  46. 46.

    , , , & Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

  47. 47.

    et al. Gaussian 09, Revision A.02 (Gaussian, 2009).

  48. 48.

    , & CHAMP, a Quantum Monte Carlo program ab initio program; available at

  49. 49.

    & Comprehensive Inorganic Chemistry Vol. 1 (eds Blair, J. C. & Emeleus, H. J.) Ch. 6 (Pergamon, 1973).

Download references

Acknowledgements

The authors thank W. Wu and C.J. Umrigar for respectively making their XMVB and CHAMP code available to us.

Author information

Affiliations

  1. UPMC Université Paris 06, CNRS UMR 7616, Laboratoire de Chimie Théorique, C. 137, 4 Place Jussieu, 75252 Paris Cedex 05, France

    • Benoît Braïda
  2. Laboratoire de Chimie Physique, UMR CNRS 8000, Université de Paris Sud, 91405 Orsay Cédex, France

    • Philippe C. Hiberty

Authors

  1. Search for Benoît Braïda in:

  2. Search for Philippe C. Hiberty in:

Contributions

Both authors designed the project. B.B. performed all the calculations. Both authors analysed the data. P.C.H. wrote the manuscript and the Supplementary Information. Both authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Benoît Braïda or Philippe C. Hiberty.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.1619

Further reading