Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic control over supramolecular gel formation

Abstract

Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of a catalysed gelator and gel formation.
Figure 2: Influence of catalysis on material formation and appearance.
Figure 3: Influence of catalysis on material morphology.
Figure 4: Gel properties and formation dynamics depend on catalyst loading.

Similar content being viewed by others

References

  1. Stryer, L. Biochemistry (W. H. Freeman, 1995).

    Google Scholar 

  2. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  Google Scholar 

  3. Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).

    Article  CAS  Google Scholar 

  4. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  Google Scholar 

  5. Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nature Chem. 3, 775–781 (2011).

    Article  CAS  Google Scholar 

  6. Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    Article  CAS  Google Scholar 

  7. Budin, I. & Devaraj, N. K. Membrane assembly driven by a biomimetic coupling reaction. J. Am. Chem. Soc. 134, 751–753 (2012).

    Article  CAS  Google Scholar 

  8. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech. 4, 19–24 (2009).

    Article  CAS  Google Scholar 

  9. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089–1094 (2010).

    Article  CAS  Google Scholar 

  10. Zhao, F. et al. β-Galactosidase-instructed formation of molecular nanofibers and a hydrogel. Nanoscale 3, 2859–2861 (2011).

    Article  CAS  Google Scholar 

  11. Gao, Y. et al. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers 94, 19–31 (2010).

    Article  CAS  Google Scholar 

  12. Webber, M. J., Newcomb, C. J., Bitton, R. & Stupp, S. I. Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7, 9665–9672 (2011).

    Article  CAS  Google Scholar 

  13. Kühnle H. & Börner, H. G. Biotransformation on polymer–peptide conjugates: a versatile tool to trigger microstructure formation. Angew. Chem. Int. Ed. 48, 6431–6434 (2009).

    Article  Google Scholar 

  14. Xing, Y. Wang, C., Han, P., Wang, Z. & Zhang, X. Acetylcholinesterase responsive polymeric supra-amphiphiles for controlled self-assembly and disassembly. Langmuir 28, 6032–6036 (2012).

    Article  CAS  Google Scholar 

  15. John, G., Zhu, G., Li, J., & Dordick, J. S. Enzymatically derived sugar-containing self-assembled organogels with nanostructured morphologies. Angew. Chem. Int. Ed. 45, 4772–4775 (2006).

    Article  CAS  Google Scholar 

  16. Gao, J. et al. Enzyme promotes the hydrogelation from a hydrophobic small molecule. J. Am. Chem. Soc. 131, 11286–11287 (2009).

    Article  CAS  Google Scholar 

  17. Hahnab, M. E. & Gianneschi, N. C. Enzyme-directed assembly and manipulation of organic nanomaterials. Chem. Commun. 47, 11814–11821 (2009).

    Article  Google Scholar 

  18. van Bommel, K. J., Stuart, M. C. A., Feringa, B. L. & van Esch, J. Two-stage enzyme mediated drug release from LMWG hydrogels. Org. Biomol. Chem. 3, 2917–2920 (2005).

    Article  CAS  Google Scholar 

  19. Azagarsamy, M. A., Sokkalingam, P. & Thayumanavan, S. Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. J. Am. Chem. Soc. 131, 14184–14185 (2009).

    Article  CAS  Google Scholar 

  20. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article  CAS  Google Scholar 

  21. Boekhoven, J., Koot, M., Wezendonk, T. A., Eelkema, R. & van Esch, J. H. A self-assembled delivery platform with post-production tunable release rate. J. Am. Chem. Soc. 134, 12908–12911 (2012).

    Article  CAS  Google Scholar 

  22. He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    Article  CAS  Google Scholar 

  23. Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    Article  CAS  Google Scholar 

  24. Steed, J. W. Supramolecular gel chemistry: developments over the last decade. Chem. Commun. 47, 1379–1383 (2011).

    Article  CAS  Google Scholar 

  25. Li, J. L., Liu, X. Y., Wang, R. Y. & Xiong, J. Y. Architecture of a biocompatible supramolecular material by supersaturation-driven fabrication of its fiber network. J. Phys. Chem. B 109, 24231–24235 (2005).

    Article  CAS  Google Scholar 

  26. de Jong, J. J. D., Lucas, L. N., Kellogg, R. M., van Esch, J. H. & Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

    Article  CAS  Google Scholar 

  27. Chen, L. et al. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. Langmuir 26, 5232–5242 (2010).

    Article  CAS  Google Scholar 

  28. Suzuki, M. et al. Effects of hydrogen bonding and van der Waals interactions on organogelation using designed low-molecular-weight gelators and gel formation at room temperature. Langmuir 19, 8622–8624 (2003).

    Article  CAS  Google Scholar 

  29. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  30. Hunt, J. N. et al. Tunable, high modulus hydrogels driven by ionic coacervation. Adv. Mater. 23, 2327–2331 (2011).

    Article  CAS  Google Scholar 

  31. Hirst, A. R. et al. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J. Am. Chem. Soc. 130, 9113–9121 (2008).

    Article  CAS  Google Scholar 

  32. Hanabusa, K., Kawakami, A., Kimura, M. & Shirai, H. Small molecular gelling agents to harden organic liquids: trialkyl cis-1,3,5-cyclohexanetricarboxamides. Chem. Lett. 191–192 (1997).

  33. van Bommel, K. J. et al. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angew. Chem. Int. Ed. 43, 1663–1667 (2004).

    Article  CAS  Google Scholar 

  34. Sreenivasachary, N. & Lehn, J. M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc. Natl Acad. Sci. USA 102, 5938–5943 (2005).

    Article  CAS  Google Scholar 

  35. Deng, G., Tang, C., Li, F., Jiang, H. & Chen, Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43, 1191–1194 (2010).

    Article  CAS  Google Scholar 

  36. Ossipov, D. A., Yang, X., Varghese, O., Kootala, S. & Hilborn, J. Modular approach to functional hyaluronic acid hydrogels using orthogonal chemical reactions. Chem. Commun. 46, 8368–8370 (2010).

    Article  CAS  Google Scholar 

  37. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  38. Lehn, J. M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  39. Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).

    Article  CAS  Google Scholar 

  40. Bhat, V. T. et al. Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry. Nature Chem. 2, 490–497 (2010).

    Article  CAS  Google Scholar 

  41. Liu, X. Y. & Sawant, P. D. Formation kinetics of fractal nanofiber networks in organogels. Appl. Phys. Lett. 79, 3518–3520 (2001).

    Article  CAS  Google Scholar 

  42. Liu, X. Y. & Sawant, P. D. Mechanism of the formation of self-organized microstructures in soft functional materials. Adv. Mater. 14, 421–426 (2002).

    Article  Google Scholar 

  43. Gianneschi, N. C., Nguyen, S. T. & Mirkin, C. A. Signal amplification and detection via a supramolecular allosteric catalyst. J. Am. Chem. Soc. 127, 1644–1645 (2005).

    Article  CAS  Google Scholar 

  44. Peters, M. V., Stoll, R. S., Kuehn, A. & Hecht, S. Photoswitching of basicity. Angew. Chem. Int. Ed. 47, 5968–5972 (2008).

    Article  CAS  Google Scholar 

  45. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nature Chem. 1, 133–137 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Commission (a Marie Curie European Reintegration grant, R.E.) and the Netherlands Organisation for Scientific Research (a VENI grant (R.E.), a VICI grant (J.H.v.E., J.B.) and an ECHO grant (R.E., J.H.v.E., J.M.P.)) for funding.

Author information

Authors and Affiliations

Authors

Contributions

J.B., R.E. and J.H.v.E. designed the experiments, J.B., J.M.P., C.B.M., F.L., E.M. and R.E. performed the experiments and analysed the data, J.M.P., C.B.M., L.v.d.M., C.M. and R.E. synthesized the molecules, R.E. and J.H.v.E. guided the research and all authors contributed to discussing the results and editing the manuscript. R.E. wrote the manuscript.

Corresponding authors

Correspondence to Jan H. van Esch or Rienk Eelkema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 25226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boekhoven, J., Poolman, J., Maity, C. et al. Catalytic control over supramolecular gel formation. Nature Chem 5, 433–437 (2013). https://doi.org/10.1038/nchem.1617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing