The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

Abstract

Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs — obtained either through exfoliation of bulk materials or bottom-up syntheses — are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of monolayered TMDs.
Figure 2: d-Orbital filling and electronic character of various TMDs.
Figure 3: Chemical exfoliation of monolayered TMDs.
Figure 4: Chemical vapour deposition of ultrathin TMDs.
Figure 5: Surface chemistry probed by adsorption of DBT.
Figure 6: Hydrogen evolution reaction catalysis with TMDs.

References

  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon film. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Geim, A. K. Graphene: Status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and opto-electronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  CAS  Google Scholar 

  8. 8

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Li, H. et al. Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M. W. & Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Castellanos-Gomez, A. et al. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Feng, J. et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Matte, H. S. S. et al. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Li, H. et al. Fabrication of single- and multilayer MoS2 film-based field effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Loh, K. P., Bao, Q. L., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tuneable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002).

    Article  CAS  Google Scholar 

  21. 21

    Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  CAS  Google Scholar 

  22. 22

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    CAS  Article  Google Scholar 

  23. 23

    Meyer, J. C., Geim, A. G., Katnelson, M. I., Novoselov, K. S. & Roth, S. The structure of suspended graphene sheets. Nature 446, 60–63 (2006).

    Article  CAS  Google Scholar 

  24. 24

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    CAS  Article  Google Scholar 

  26. 26

    Bissessur, R., Kanatzidis, M. G., Schindler, J. L. & Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 . J. Chem. Soc. Chem. Commun. 1582–1585 (1993).

  27. 27

    Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 273, 69–83 (1963).

    Article  Google Scholar 

  28. 28

    Py, M. A. & Haering, R. R., Structural destabilization induced by lithium intercalation in MoS2 and related-compounds. Can. J. Phys. 61, 76–84 (1983).

    CAS  Article  Google Scholar 

  29. 29

    Ganal, P., Olberding, W. & Butz, T. Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic 1T-TaS2 . Solid State Ionics 59, 313–319 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Lorenz, T., Teich, D., Joswig, J. O. & Seifert, G. Theoretical study of mechanical behavior of individual TiS2 and MoS2 nanotubes. J. Phys. Chem. C 116, 11714–11721 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Heising, J. & Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Castro Neto, A. H. & Novoselov, K. Two dimensional crystals: Beyond graphene. Mater. Exp. 1, 10–17 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Tongay, S. et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 . Nano Lett. 12, 5576–5580 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37

    Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    CAS  Article  Google Scholar 

  38. 38

    Dines, M. B. Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

    CAS  Article  Google Scholar 

  39. 39

    Benavente, E., Santa Ana, M. A., Mendizabal, F. & Gonzalez, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Golub, A. S., Zubavichus, Y. V., Slovokhotov, Y. L. & Novikov, Y. N. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds. Russian Chem. Rev. 72, 123–141 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Zeng, Z. Y. et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y. & Zhang, H.-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Cunningham, G. et al. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    May, P., Khan, U., Hughes, J. M. & Coleman, J. N. Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Zhi, C., Bando, Y., Tang, C., Kuwahara, H. & Goldberg, D. Large scale fabrication of boron nitrode nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009).

    CAS  Article  Google Scholar 

  50. 50

    O'Neill, A., Khan, U. & Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Lee, H. S. et al. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Shi, Y. et al. Van der waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Salmeron, M., Somorjai, G. A. & Chianelli R. R. A LEED-AES study of the structure of sulfur monolayers on the Mo(100) crystal face. Surf. Sci. 127, 526–540 (1983).

    CAS  Article  Google Scholar 

  59. 59

    Wilson, J. M. LEED and AES study of the interaction of H2S and Mo (100). Surf. Sci. 53, 330–340 (1975).

    CAS  Article  Google Scholar 

  60. 60

    Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Jager-waldau, A., Lux-steiner, M., Jager-waldau, R., Burkhardt, R. & Bucher, E. Composition and morphology of MoSe2 thin films. Thin Solid Films 189, 339–345 (1990).

    Article  Google Scholar 

  62. 62

    Genut, M., Margulis, L., Tenne, R. & Hodes, G. Effect of substrate on growth of WS2 thin films. Thin Solid Films 219, 30–36 (1992).

    CAS  Article  Google Scholar 

  63. 63

    Ennaoui, A., Fiechter, S., Ellmer, K., Scheer, R. & Diesner, K. Preparation of textured and photoactive 2H-WS2 thin films by sulfurization of WO3 . Thin Solid Films 261, 124–131 (1995).

    CAS  Article  Google Scholar 

  64. 64

    Boscher, N. D., Carmalt, C. J., Palgrave, R. G., Gil-Tomas, J. J. & Parkin. I. P. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor. Depos. 12, 692–698 (2006).

    CAS  Article  Google Scholar 

  65. 65

    Carmalt, C. J., Parkin, I. P. & Peters. E. S. Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22, 1499–4505 (2003).

    CAS  Article  Google Scholar 

  66. 66

    Boscher, N. D., Carmalt, C. J. & Parkin. I. P. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass–highly hydrophobic sticky surfaces. J. Mater. Chem. 16, 122–127 (2006).

    CAS  Article  Google Scholar 

  67. 67

    Boscher, N. D., Blackman, C. S., Carmalt, C. J., Parkin, I. P. & Prieto. A. G. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253, 6041–6046 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Peters, E. S., Carmalt, C. J. & Parkin, I. P. Dual-source chemical vapour deposition of titanium sulfide thin films from tetrakisdimethylamidotitanium and sulfur precursors. J. Mater. Chem. 14, 3474–3477 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Tuxen, A. et al. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS NANO 4, 4677–4682 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Lauritsen, J. V. Location and coordination of promoter atoms in Co- and Ni-Promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007).

    CAS  Article  Google Scholar 

  72. 72

    Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2, 2515–2525 (2012).

    Article  CAS  Google Scholar 

  73. 73

    Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Article  Google Scholar 

  74. 74

    Laursen, L. B., Kegnæs, S., Dahla, S. & Chorkendorff, I. Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012).

    CAS  Article  Google Scholar 

  75. 75

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    CAS  Article  Google Scholar 

  77. 77

    Merki, D. et al. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Norskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Chem. 152, J23–J26 (2005).

    CAS  Article  Google Scholar 

  79. 79

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  80. 80

    Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Article  Google Scholar 

  81. 81

    Bonde, J. et al. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  83. 83

    Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation, Science 335, 698–702 (2012).

    CAS  Article  Google Scholar 

  84. 84

    Chang, Y.-H. et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Wilcoxon, J. P. & Samara G. A. Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters. Phys. Rev. B 51, 7200 (1995).

    Article  Google Scholar 

  86. 86

    Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Zhou, W. J. et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140–147 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Haering, R. R., Stiles, J. A. R. & Brandt, K. Lithium molybdenum disulphide battery cathode. US Patent 4224390 (1980).

  89. 89

    Bhandavat, R., David, L. & Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3, 1523–1530 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Chang, K., Chen, W. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical properties for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Chang, K. & Chen, W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47, 4252–4254 (2011).

    CAS  Article  Google Scholar 

  92. 92

    Feng, C. Q. et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44, 1811–1815 (2009).

    CAS  Article  Google Scholar 

  93. 93

    Ding, S., Zhang, D., Chen, J. S. & Lou, X. W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4, 95–98 (2012).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Zhang, C., Wang, Z., Guo, Z. & Lou, X. W. Synthesis of MoS2-C one-dimensional nanostructures with improved Lithium storage properties. ACS Appl. Mater. Interfaces 4, 3765–3768 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Ding, S., Chen, J. S. & Lou, X. W. Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved Lithium storage properties. Chem. Euro. J. 17, 13142–13145 (2011).

    CAS  Article  Google Scholar 

  96. 96

    Zhang, C., Wu, H. B., Guo, Z. & Lou, X. W. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Comm. 20, 7–10 (2012).

    CAS  Article  Google Scholar 

  97. 97

    Chang, K. & Chen, W. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Chang, K. & Chen, W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Comm. 47, 4252–4254 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  100. 100

    Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Liu, L., Kumar, S. B., Ouyang, Y. & Gou, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).

    CAS  Article  Google Scholar 

  103. 103

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  CAS  Google Scholar 

  104. 104

    Lee, K. et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4670 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    CAS  Article  Google Scholar 

  109. 109

    Lee, S. H. et al. MoS2 phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.C. acknowledges support from the National Science Foundation IGERT programme (DGE 0903661). H.Z. acknowledges support from the Singapore National Research Foundation under the CREATE programme: 'Nanomaterials for Energy and Water Management', and NTU under the Start-Up Grant M4080865.070.706022. H.S.S. acknowledges support from WCU (World Class University) programme (R31-2008-000-20012-0) and the grant (Code No. 2011-0031630) from the Center for Advanced Soft Electronics under the Global Frontier Research Program through the National Research Foundation funded by MEST of Korea. G.E. acknowledges the Singapore National Research Foundation for NRF Research Fellowship (NRF-NRFF2011-02). L.L. acknowledges support from Academia Sinica Taiwan. We acknowledge Jieun Yang for editorial help and TOC artwork. K.P.L. acknowledges the NRF-CRP award 'Novel 2D materials with tailored properties: beyond graphene' (R-144-000-295-281).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chhowalla, M., Shin, H., Eda, G. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing