Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Product-state-resolved dynamics of the elementary reaction of atomic oxygen with molecular hydrogen, O(3P) + D2 → OD(X2Π) + D

Abstract

Elementary three-atom systems provide stringent tests of the accuracy of ab initio theory. One such important reaction, O(3P) + H2 → OH(X2Π) + H, has eluded detailed experimental study because of its high activation barrier. In this reaction, both the ground-state reactant atom and product diatomic molecule have open-shell character, which introduces the intriguing complication of non-Born–Oppenheimer effects in both the entrance and the exit channels. These effects may be probed experimentally in both the fine-structure and the Λ-doublet splittings of the OH product. We have used laser-induced fluorescence to measure OD internal product-state distributions from the analogous reaction of O(3P) with D2, enabled by a unique high-energy O(3P) source. We find that the OD (ν′ = 0) product is rotationally highly excited, in excellent agreement with earlier theoretical predictions. However, the distributions over the OD(X2Π) fine-structure and Λ-doublet states, diagnostic of electronic non-adiabaticity in the reaction, challenge the prevailing theoretical understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the crossed molecular beams apparatus.
Figure 2: OD A–X(1,0) LIF excitation spectrum of the products of the O(3P) + D2 reaction at a collision energy of 105 kJ mol−1.
Figure 3: Comparison of experimental (black) and theoretically predicted (red) OD ν′ = 0, N′ rotational population distributions.
Figure 4: Experimental OD (ν′ = 0, N′) F1/F2 fine-structure ratios, averaged over the contributing Π(A′) and Π(A′′) levels.
Figure 5: Experimental Π(A′)/Π(A′′) Λ-doublet ratios (black) for OD ν′ = 0, N′, averaged over the contributing F1 and F2 levels.

Similar content being viewed by others

References

  1. Tsang, W. & Hampson, R. F. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data 15, 1087–1279 (1986).

    Article  CAS  Google Scholar 

  2. Balakrishnan, N. Quantum calculations of the O(3P) + H2 → OH + H reaction. J. Chem. Phys. 121, 6346–6352 (2004).

    Article  CAS  Google Scholar 

  3. Neumark, D. M., Wodtke, A. M., Robinson, G. N., Hayden, C. C. & Lee, Y. T. Molecular-beam studies of the F + H2 reaction. J. Chem. Phys. 82, 3045–3066 (1985).

    Article  CAS  Google Scholar 

  4. Jankunas, J. et al. Seemingly anomalous angular distributions in H + D2 reactive scattering. Science 336, 1687–1690 (2012).

    Article  CAS  Google Scholar 

  5. Che, L. et al. Breakdown of the Born–Oppenheimer approximation in the F + o-D2 → DF + D reaction. Science 317, 1061–1064 (2007).

    Article  CAS  Google Scholar 

  6. Walch, S. P., Dunning, T. H. Jr, Raffenetti, R. C. & Bobrowicz, F. W. A theoretical study of the potential energy surface for O(3P) + H2 . J. Chem. Phys. 72, 406–415 (1980).

    Article  CAS  Google Scholar 

  7. Walch, S. P., Wagner, A. F., Dunning, T. H. Jr & Schatz, G. C . Theoretical studies of the O + H2 reaction. J. Chem. Phys. 72, 2894–2896 (1980).

    Article  CAS  Google Scholar 

  8. Bowman, J. M., Wagner, A. F., Walch, S. P. & Dunning, T. H. Jr. Reaction dynamics for O(3P) + H2 and D2. IV. Reduced dimensionality quantum and quasiclassical rate constants with an adiabatic incorporation of the bending motion. J. Chem. Phys. 81, 1739–1752 (1984).

    Article  CAS  Google Scholar 

  9. Rogers, S., Wang, D., Kuppermann, A. & Walch, S. Chemically accurate ab initio potential energy surfaces for the lowest 3A′ and 3A′′ electronically adiabatic states of O(3P) + H2 . J. Phys. Chem. A 104, 2308–2325 (2000).

    Article  CAS  Google Scholar 

  10. Hoffmann, M. R. & Schatz, G. C. Theoretical studies of intersystem crossing effects in the O + H2 reaction. J. Chem. Phys. 113, 9456–9465 (2000).

    Article  CAS  Google Scholar 

  11. Garton, D. J., Minton, T. K., Maiti, B., Troya, D. & Schatz, G. C. A crossed molecular beams study of the O(3P) + H2 reaction: comparison of excitation function with accurate quantum reactive scattering calculations. J. Chem. Phys. 118, 1585–1588 (2003).

    Article  CAS  Google Scholar 

  12. Braunstein, M., Adler-Golden, S., Maiti, B. & Schatz, G. C. Quantum and classical studies of the O(3P) + H2 (v = 0–3, j = 0) → OH + H reaction using benchmark potential surfaces. J. Chem. Phys. 120, 4316–4323 (2004).

    Article  CAS  Google Scholar 

  13. Garton, D. J. et al. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3P) + D2 . J. Phys. Chem. A 110, 1327–1341 (2006).

    Article  CAS  Google Scholar 

  14. Chu, T-S., Zhang, X. & Han, K-L. A quantum wave-packet study of intersystem crossing effects in the O(3P2,1,0,1D2) + H2 reaction. J. Chem. Phys. 122, 214301 (2005).

    Article  Google Scholar 

  15. Garashchuk, S., Rassolov, V. A. & Schatz, G. C. Semiclassical nonadiabatic dynamics based on quantum trajectories for the O(3P,1D) + H2 system. J. Chem. Phys. 124, 244307 (2006).

    Article  Google Scholar 

  16. Li, B. & Han, K-L. Mixed quantum–classical study of nonadiabatic dynamics in the O(3P2,1,0,1D2) + H2 reaction. J. Phys. Chem. A 113, 10189–10195 (2009).

    Article  CAS  Google Scholar 

  17. Xu, Z. & Zong, F. Chemical stereodynamics of the O(3P) + H2 (v = 0, j = 0) → OH + H reaction on the two lowest triplet electronic states. J. Mol. Struct Theochem 960, 22–30 (2010).

    Article  CAS  Google Scholar 

  18. Han, B. & Zheng, Y. Nonadiabatic quantum dynamics in O(3P) + H2 → OH + H: a revisited study. J. Comput. Chem. 32, 3520–3525 (2011).

    Article  CAS  Google Scholar 

  19. Maiti, B. & Schatz, G. C. Theoretical studies of intersystem crossing effects in the O(3P,1D) + H2 reaction. J. Chem. Phys. 119, 12360–12371 (2003).

    Article  CAS  Google Scholar 

  20. Han, J., Chen, X. & Weiner, B. R. Reaction dynamics of O(3P) + H2 (v = 1). Chem. Phys. Lett. 332, 243–250 (2000).

    Article  CAS  Google Scholar 

  21. Dieke, G. H. & Crosswhite, H. M. The ultraviolet bands of OH: fundamental data. J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).

    Article  CAS  Google Scholar 

  22. Alexander, M. H. et al. A nomenclature for Λ-doublet levels in rotating linear molecules. J. Chem. Phys. 89, 1749–1753 (1988).

    Article  CAS  Google Scholar 

  23. Luque, J & Crosley, D. R. LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (SRI International, Menlo Park, California, 1999).

    Google Scholar 

  24. Andresen, P. & Rothe, E. W. Analysis of chemical dynamics via Λ-doubling: Directed lobes in product molecules and transition states. J. Chem. Phys. 82, 3634–3640 (1985).

    Article  CAS  Google Scholar 

  25. Greene, C. H. & Zare, R. N. Determination of product population and alignment using laser-induced fluorescence. J. Chem. Phys. 78, 6741–6753 (1983).

    Article  CAS  Google Scholar 

  26. Bronikowski, M. J. & Zare, R. N. Simple model for Λ-doublet propensities in bimolecular reactions. Chem. Phys. Lett. 166, 5–10 (1990).

    Article  CAS  Google Scholar 

  27. Alexander, M. H., Rackham, E. J. & Manolopoulos, D. E. Product multiplet branching in the O(1D) + H2 → OH(2Π) + H reaction. J. Chem. Phys. 121, 5221–5235 (2004).

    Article  CAS  Google Scholar 

  28. Butler, J. E., Jursich, G. M., Watson, I. A. & Wiesenfeld, J. R. Reaction dynamics of atomic oxygen (1D2) H2, HD, D2: OH, OD(X2Π) product internal energy distributions. J. Chem. Phys. 84, 5365–5377 (1986).

    Article  CAS  Google Scholar 

  29. Caledonia, G. E., Krech, R. H. & Green, B. D. A high flux source of energetic oxygen atoms for material degradation studies. AIAA J. 25, 59–63 (1987).

    Article  Google Scholar 

  30. Auerbach, D. J. Velocity measurements by time of flight methods in Atomic and Molecular Beam Methods Vol. 1 (eds Scoles, G., Bassi, D, Buck, U. & Laine, D. C.) 362–379 (Oxford Univ. Press, 1988).

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (FA9550-10-1-0563). K.G.M. is grateful for a Royal Society Leverhulme Trust Senior Research Fellowship under which this work was initiated. We thank G. Schatz, M. Costen and A. Orr-Ewing for invaluable discussions and advice. The data described in this work can be obtained from the corresponding authors on request.

Author information

Authors and Affiliations

Authors

Contributions

T.K.M. and J.Z. conceived and designed the experiments. J.Z., S.L. and K.G.M. performed the experiments and analysed the data. S.L., J.Z., K.G.M. and T.K.M. contributed to the analysis methods, discussed the results and commented on the manuscript. K.G.M. and T.K.M. co-wrote the paper.

Corresponding authors

Correspondence to Kenneth G. McKendrick or Timothy K. Minton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahankar, S., Zhang, J., McKendrick, K. et al. Product-state-resolved dynamics of the elementary reaction of atomic oxygen with molecular hydrogen, O(3P) + D2 → OD(X2Π) + D. Nature Chem 5, 315–319 (2013). https://doi.org/10.1038/nchem.1588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing