Abstract
The translation of DNA sequences into corresponding biopolymers enables the production, function and evolution of the macromolecules of life. In contrast, methods to generate sequence-defined synthetic polymers with similar levels of control have remained elusive. Here, we report the development of a DNA-templated translation system that enables the enzyme-free translation of DNA templates into sequence-defined synthetic polymers that have no necessary structural relationship with nucleic acids. We demonstrate the efficiency, sequence-specificity and generality of this translation system by oligomerizing building blocks including polyethylene glycol, α-(D)-peptides, and β-peptides in a DNA-programmed manner. Sequence-defined synthetic polymers with molecular weights of 26 kDa containing 16 consecutively coupled building blocks and 90 densely functionalized β-amino acid residues were translated from DNA templates using this strategy. We integrated the DNA-templated translation system developed here into a complete cycle of translation, coding sequence replication, template regeneration and re-translation suitable for the iterated in vitro selection of functional sequence-defined synthetic polymers unrelated in structure to nucleic acids.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Badi, N. & Lutz, J-F. Sequence control in polymer synthesis. Chem. Soc. Rev. 38, 3383–3390 (2009).
Lutz, J-F. Polymer chemistry: a controlled sequence of events. Nature Chem. 2, 84–85 (2010).
Pfeifer, S. & Lutz, J-F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007).
Nakatani, K., Ogura, Y., Koda, Y., Terashima, T. & Sawamoto, M. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. J. Am. Chem. Soc. 134, 4373–4383 (2012).
Soeriyadi, A. H., Boyer, C., Nyström, F., Zetterlund, P. B. & Whittaker, M. R. High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): toward biological precision. J. Am. Chem. Soc. 133, 11128–11131 (2011).
Lo, P. K. & Sleiman, H. F. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers. J. Am. Chem. Soc. 131, 4182–4183 (2009).
McHale, R., Patterson, J. P., Zetterlund, P. B. & Reilly, R. K. O. Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chem. 4, 491–497 (2012).
Belowich, M. E. et al. Positive cooperativity in the template-directed synthesis of monodisperse macromolecules. J. Am. Chem. Soc. 134, 5243–5261 (2012).
Lutz, J-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym. Chem. 1, 55–62 (2010).
Leitzel, J. C. & Lynn, D. G. Template-directed ligation: from DNA towards different versatile templates. Chem. Rev. 1, 53–62 (2001).
Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).
Li, X., Zhan, Z-Y. J., Knipe, R. & Lynn, D. G. DNA-catalyzed polymerization. J. Am. Chem. Soc. 124, 746–747 (2002).
Schrum, J. P., Ricardo, A., Krishnamurthy, M., Blain, J. C. & Szostak, J. W. Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′3′-dideoxyribonucleoside-5′-phosphorimidazolide monomers. J. Am. Chem. Soc. 131, 14560–14570 (2009).
Henry, A. & Romesberg, F. E. The evolution of DNA polymerases with novel activities. Curr. Opin. Biotechnol. 16, 370–377 (2005).
Josephson, K., Hartman, M. C. T. & Szostak, J. W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).
Datta, B. & Schuster, G. B. DNA-directed synthesis of aniline and 4-aminobiphenyl oligomers: programmed transfer of sequence information to a conjoined polymer nanowire. J. Am. Chem. Soc. 130, 2965–2973 (2008).
Rosenbaum, D. M. & Liu, D. R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).
Kleiner, R. E., Brudno, Y., Birnbaum, M. E. & Liu, D. R. DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J. Am. Chem. Soc. 130, 4646–4659 (2008).
Peng, X., Li, H. & Seidman, M. A template-mediated click-click reaction: PNA–DNA, PNA–PNA (or peptide) ligation, and single nucleotide discrimination. Eur. J. Org. Chem. 2010, 4194–4197 (2010).
Chen, W. & Schuster, G. B. DNA-programmed modular assembly of cyclic and linear nanoarrays for the synthesis of two-dimensional conducting polymers. J. Am. Chem. Soc. 134, 840–843 (2012).
He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotech. 5, 778–782 (2010).
Mckee, M. L. et al. Programmable one-pot multistep organic synthesis using DNA junctions. J. Am. Chem. Soc. 134, 1146–1149 (2011).
Brudno, Y., Birnbaum, M. E., Kleiner, R. E. & Liu, D. R. An in vitro translation, selection and amplification system for peptide nucleic acids. Nature Chem. Biol. 6, 148–155 (2010).
Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chem. 4, 183–187 (2012).
Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).
Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nature Rev. Drug Discov. 7, 608–624 (2008).
Li, X. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).
Hud, N. V., Jain, S. S., Li, X. & Lynn, D. G. Addressing the problems of base pairing and strand cyclization in template-directed synthesis: a case for the utility and necessity of 'molecular midwives' and reversible backbone linkages for the origin of proto-RNA. Chem. Biodiv. 4, 768–783 (2007).
Winnik, A. End-to-end cyclization of polymer chains. Acc. Chem. Res. 18, 73–79 (1985).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Lallana, E., Riguera, R. & Fernandez-Megia, E. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide–alkyne cycloadditions. Angew. Chem. Int. Ed. 50, 8794–8804 (2011).
Schmidt, J. G., Christensen, L., Nielsen, P. E. & Orgel, L. E. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 25, 4792–4796 (1997).
Boehler, C., Nielsen, P. E. & Orgel, L. E. Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581 (1995).
Goodwin, J. T. & Lynn, D. G. Template-directed synthesis: use of a reversible reaction. Chem. Commun. 9197–9198 (1992).
Gartner, Z. J., Kanan, M. W. & Liu, D. R. Expanding the reaction scope of DNA-templated synthesis. Angew. Chem. Int. Ed. 783, 1796–1800 (2002).
Cho, B. R., Cho, N. S., Song, K. S., Son, K. N. & Kim, Y. K. Elimination reactions of (E)-2,4-dinitrobenzaldehyde O-aryloximes promoted by RO–/ROH buffers in EtOH. J. Org. Chem. 2, 3006–3009 (1998).
Kumar, R. et al. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J. Am. Chem. Soc. 129, 6859–6864 (2007).
Chouikhi, D., Barluenga, S. & Winssinger, N. Clickable peptide nucleic acids (cPNA) with tunable affinity. Chem. Commun. 46, 5476–5478 (2010).
Wright, M. C. & Joyce, G. F. Continuous in vitro evolution of catalytic function. Science 276, 614–617 (1997).
Joyce, G. F. Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb. Symp. Quant. Biol. 52, 41–51 (1987).
Daguer, J. P. et al. DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem. Sci. 2, 625–632 (2011).
Andersen, C. S., Yan, H. & Gothelf, K. V. Bridging one helical turn in double-stranded DNA by templated dimerization of molecular rods. Angew. Chem. Int. Ed. 47, 5569–5572 (2008).
El-Sagheer, A. H. & Brown, T. Click chemistry with DNA. Chem. Soc. Rev. 39, 1388–1405 (2010).
Petersson, E. J. & Schepartz, A. Toward β-amino acid proteins: design, synthesis, and characterization of a fifteen kilodalton β-peptide tetramer. J. Am. Chem. Soc. 130, 821–823 (2008).
Goodman, C. M., Choi, S., Shandler, S. & DeGrado, W. F. Foldamers as versatile frameworks for the design and evolution of function. Nature Chem. Biol. 3, 252–262 (2007).
Martinek, T. A. & Fulop, F. Side-chain control of β-peptide secondary structures. Design principles. Eur. J. Biochem. 270, 3657–3666 (2003).
Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V. & Seebach, D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2, 445–455 (2001).
Bautista, A. D., Appelbaum, J. S., Craig, C. J., Michel, J. & Schepartz, A. Bridged beta(3)-peptide inhibitors of p53–hDM2 complexation: correlation between affinity and cell permeability. J. Am. Chem. Soc. 132, 2904–2906 (2010).
Olsen, C. et al. Antimicrobial, hemolytic, and cytotoxic activities of β-peptoid-peptide hybrid oligomers: improved properties compared to natural AMPs. ChemBioChem 11, 1356–1360 (2010).
Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 6, 2853–2855 (2004).
Acknowledgements
This work was supported by the Howard Hughes Medical Institute and the NIH/NIGMS (R01GM065865). J.N. was partially supported by an Eli Lilly Organic Chemistry Graduate Fellowship. R.H. was supported by a postdoctoral fellowship from Canada's National Science and Engineering Council (NSERC). The authors are grateful to J. Heemstra, Y. Brudno, C. Dumelin, Y. Lu and S. Trauger for helpful discussions.
Author information
Authors and Affiliations
Contributions
J.N., R.H. and D.R.L. designed the research, analysed the data and co-wrote the manuscript. J.N. performed the experiments.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 12898 kb)
Rights and permissions
About this article
Cite this article
Niu, J., Hili, R. & Liu, D. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nature Chem 5, 282–292 (2013). https://doi.org/10.1038/nchem.1577
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1577
This article is cited by
-
Catalytic length-controlled oligomerization with synthetic programmable templates
Nature Synthesis (2023)
-
Molecular data storage with zero synthetic effort and simple read-out
Scientific Reports (2022)
-
A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules
Nature Chemistry (2022)
-
Modified nucleic acids: replication, evolution, and next-generation therapeutics
BMC Biology (2020)
-
DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials
Topics in Current Chemistry (2020)