Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization

Abstract

Chain alignment can significantly influence the macroscopic properties of a polymeric material, but no general and versatile methodology has yet been reported to obtain highly ordered crystalline packing of polymer chains, with high stability. Here, we disclose a strategy that relies on ‘ordered crosslinks’ to produce polymeric materials that exhibit a crystalline arrangement. Divinyl crosslinkers (2,5-divinyl-terephthalate) were first embedded, as substitutional ligands, into the structure of a porous coordination polymer (PCP), [Cu(terephthalate)triethylenediamine0.5]n. A representative vinyl monomer, styrene, was subsequently polymerized inside the channels of the host PCP. The polystyrene chains that form within the PCP channels also crosslink with the divinyl species. This bridges together the polymer chains of adjacent channels and ensures that, on selective removal of the PCP, the polymer chains remain aligned. Indeed, the resulting material exhibits long-range order and is stable to thermal and solvent treatments, as demonstrated by X-ray powder diffraction and transmission electron microscopy.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of host–guest cross-polymerization.
Figure 2: Solid-state NMR measurement of PSt.
Figure 3: Shape replication process from PCP to polymer.
Figure 4: Crystalline arrangement of PSt.
Figure 5: Controlled uniaxial alignment of PSt chains.

References

  1. Martin, C. R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 28, 61–68 (1995).

    CAS  Article  Google Scholar 

  2. Akagi, K. & Shirakawa, H. Morphological alignment of liquid crystalline conductive polyacetylene derivatives. Macromol. Symp. 104, 137–158 (1996).

    CAS  Article  Google Scholar 

  3. Lee, J. I. et al. Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. Nano Lett. 8, 2315–2320 (2008).

    CAS  PubMed  Article  Google Scholar 

  4. Natta, G., Corradini, P. & Bassi, I. B. Crystal structure of isotactic polystyrene. Il Nuovo Cimento 15, 68–82 (1960).

    CAS  Article  Google Scholar 

  5. Farina, M. The stereochemistry of linear macromolecules. Top. Stereochem. 17, 1–111 (1987).

    CAS  Google Scholar 

  6. Kaminsky, W. Highly active metallocene catalysts for olefin polymerization. J. Chem. Soc. Dalton Trans. 1413–1418 (1998).

  7. Toney, M. F. et al. Near-surface aligment of polymers in rubbed films. Nature 347, 709–711 (1995).

    Article  Google Scholar 

  8. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  PubMed  Google Scholar 

  9. Kubo, Y. et al. A supramolecular bundling approach toward the alignment of conjugated polymers. Angew. Chem. Int. Ed. 45, 1548–1553 (2006).

    CAS  Article  Google Scholar 

  10. Sozzani, P., Bovey, F. A. & Schilling, F. C. Characterization of isolated polyethylene chains in the solid state. Macromolecules 24, 6764–6768 (1991).

    CAS  Article  Google Scholar 

  11. Lauher, J. W., Fowler, F. W. & Goroff, N. S. Single-crystal-to-single-crystal topochemical polymerizations by design. Acc. Chem. Res. 41, 1215–1229 (2008).

    CAS  PubMed  Article  Google Scholar 

  12. Matsumoto, A. Polymer structure control based on crystal engineering for material design. Polym. J. 35, 93–121 (2003).

    CAS  Article  Google Scholar 

  13. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nature Chem. 4, 287–291 (2012).

    CAS  Article  Google Scholar 

  14. Grell, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 9, 798–802 (1997).

    CAS  Article  Google Scholar 

  15. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chem. 3, 234–238 (2011).

    CAS  Article  Google Scholar 

  16. Svec, F. & Fréchet, J. M. J. New design of macroporous polymers and supports: from separation to biocatalysis. Science 273, 205–211 (1996).

    CAS  PubMed  Article  Google Scholar 

  17. Malik, M. A., Ali, S. W. & Ahmed, I. Sulfonated styrene-divinylbenzene resins: optimizing synthesis and estimating characteristics of the base copolymers and the resins. Ind. Eng. Chem. Res. 49, 2608–2612 (2010).

    CAS  Article  Google Scholar 

  18. O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. Ferey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    CAS  PubMed  Article  Google Scholar 

  20. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  PubMed  Article  Google Scholar 

  21. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  22. Li, J-R., Sculley, J. & Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    CAS  PubMed  Article  Google Scholar 

  23. Shimizu, G. K. H., Vaidhyanathan, R. & Taylor J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009).

    CAS  PubMed  Article  Google Scholar 

  24. Cohen, S. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    CAS  PubMed  Article  Google Scholar 

  25. Wang, Z., Chen, G. & Ding, K. Self-suported catalysts. Chem. Rev. 109, 322–359 (2009).

    CAS  PubMed  Article  Google Scholar 

  26. Corma, A., Garcia, H. & Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. Uemura, T., Yanai, N. & Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 38, 1228–1236 (2009).

    CAS  PubMed  Article  Google Scholar 

  28. Lee, J. Y. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    CAS  PubMed  Article  Google Scholar 

  29. Uemura, T., Ono, Y., Kitagawa, K. & Kitagawa, S. Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight and stereostructure. Macromolecules 41, 87–94 (2008).

    CAS  Article  Google Scholar 

  30. Uemura, T., Ono, Y., Hijikata, Y. & Kitagawa, S. Functionalization of coordination nanochannels for controlling tacticity in radical vinyl polymerization. J. Am. Chem. Soc. 132, 4917–4924 (2010).

    CAS  PubMed  Article  Google Scholar 

  31. Uemura, T. et al. Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace. J. Am. Chem. Soc. 130, 6781–6788 (2008).

    CAS  PubMed  Article  Google Scholar 

  32. Fukushima, T. et al. Solid solution of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew. Chem. Int. Ed. 49, 4820–4824 (2010).

    CAS  Article  Google Scholar 

  33. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    CAS  PubMed  Article  Google Scholar 

  34. Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur. J. Inorg. Chem. 16, 2338–2343 (2009).

    Article  CAS  Google Scholar 

  35. Vinagradov, E., Madhu, P. K. & Vega, S. High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem. Phys. Lett. 314, 443–450 (1999).

    Article  Google Scholar 

  36. Glans, J. H. & Turner, D. T. Glass transition elevation of polystyrene by crosslinks. Polymer 22, 1540–1543 (1981).

    CAS  Article  Google Scholar 

  37. Li, Y., Fan, Y. & Ma, J. Thermal, physical and chemical stability of porous polystyrene-type beads with different degrees of crosslinking. Polym. Degrad. Stab. 73, 163–167 (2001).

    CAS  Article  Google Scholar 

  38. Sozzani, P. et al. Complete shape retention in the transformation of silica to polymer micro-objects. Nature Mater. 5, 545–551 (2006).

    CAS  Article  Google Scholar 

  39. Distefano, G., Comotti, A., Bracco, S., Beretta, M. & Sozzani, P. Porous dipeptide crystals as polymerization nanoreactors. Angew. Chem. Int. Ed. 51, 9258–9262 (2012).

    CAS  Article  Google Scholar 

  40. Cepak, V. M. & Martin, C. R. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem. Mater. 11, 1363–1367 (1999).

    CAS  Article  Google Scholar 

  41. Moon, S. I. & McCarthy, T. J. Template synthesis and self-assembly of nanoscopic polymer ‘pencils’. Macromolecules 36, 4253–4255 (2003).

    CAS  Article  Google Scholar 

  42. Thomas, A., Goettmann, F. & Antonietti, M. Hard templates for soft materials: creating nanostructured organic materials. Chem. Mater. 20, 738–755 (2008).

    CAS  Article  Google Scholar 

  43. Johnson, S. A., Brigham, E. S., Ollivier, P. J. & Mallouk, T. E. Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chem. Mater. 9, 2448–2458 (1997).

    CAS  Article  Google Scholar 

  44. Nyquist, R. A., Putzig, C. L., Leugers, M. A., McLachlan, R. D. & Thill, B. Comparison of the vibrational spectra and assignments for α-syndiotactic, β-syndiotactic, isotactic and atactic polystyrene and toluene. Appl. Spectrosc. 46, 981–987 (1992).

    CAS  Article  Google Scholar 

  45. Reynolds, N. M., Savage, J. D. & Hsu, S. L. A spectroscopic study of syndiotactic polystyrene. Macromolecules 22, 2867–2869 (1989).

    CAS  Article  Google Scholar 

  46. Kobayashi, M., Nakaoki, T. & Ishihara, N. Molecular conformation in glasses and gels of syndiotactic and isotactic polystyrenes. Macromolecules 23, 78–83 (1990).

    CAS  Article  Google Scholar 

  47. Krimm, S. & Tobolsky, A. V. Quantitative X-ray studies of order in amorphous and crystalline polymers: scattering from various polymers and a study of the glass transition in polystyrene and polymethyl methacrylate. Text. Res. J. 21, 805–822 (1951).

    CAS  Article  Google Scholar 

  48. White, D. M. Stereospecific polymerization in urea canal complexes. J. Am. Chem. Soc. 82, 5678–5685 (1960).

    CAS  Article  Google Scholar 

  49. Di Silvestro, G. & Sozzani, P. Polymerization in clathrates. Comprehensive Polymer Science 4, 303–315 (1989).

    Article  Google Scholar 

  50. Allcock, H. R., Silverberger, E. N. & Dudley, G. K. Stereocontrolled polymerization within a cyclophosphazene clathrate tunnel system. Macromolecules 27, 1033–1038 (1994).

    CAS  Article  Google Scholar 

  51. Ishihara, N., Seimiya, T., Kuramoto, M. & Uoi, M. Crystalline syndiotactic polystyrene. Macromolecules 19, 2464–2465 (1986).

    CAS  Article  Google Scholar 

  52. Wang, L-H., Choy, C. L. & Porter, R. S. Thermal expansion of ultradrawn polystyrene. J. Polym. Sci. 20, 633–640 (1982).

    CAS  Google Scholar 

  53. Brandrup, J. & Immergut, E. H. Polymer Handbook 3rd edn (Wiley-Interscience, 1989).

  54. Boyer, R. F. in Encyclopedia of Polymer Science and Technology Vol. 13 (ed. Mark, H. F.) 251–326 (Wiley, 1970).

  55. Hay, J. N. Crystallization kinetics of high polymers: isotactic polystyrene. J. Polym. Sci. A 3, 433–447 (1965).

    CAS  Google Scholar 

  56. Levchik, G. F., Si, K., Levchik, S. V., Camino, G. & Wilkie, C. A. The correlation between cross-linking and thermal stability: cross-linked polystyrenes and polymethacrylates. Polym. Degrad. Stab. 65, 395–403 (1999).

    CAS  Article  Google Scholar 

  57. Bonifacio, M. C., Robertson, C. R., Jung, J. Y. & King, B. T. Polycyclic aromatic hydrocarbons by ring-closing metathesis. J. Org. Chem. 70, 8522–8526 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Asahi Glass Foundation and a Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. A.C. and P.S. thank the Cariplo Foundation and Lombardy Region for financial support. G.D. and T.U. thank Y. Chujo of Kyoto University for access to SEM-EDX apparatus. S.I. thanks H. Kurata of Kyoto University for use of the cryogenic TEM.

Author information

Authors and Affiliations

Authors

Contributions

T.U. conceived and directed the project. G.D. designed and performed the experiments. H.S. carried out the experiments. M.T. and S.I. performed TEM measurements and analysed the data. S.B., A.C. and P.S. performed the solid-state NMR measurements. G.D., A.C., P.S., T.U. and S.K. discussed the results and wrote the paper.

Corresponding authors

Correspondence to Takashi Uemura or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8110 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Distefano, G., Suzuki, H., Tsujimoto, M. et al. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nature Chem 5, 335–341 (2013). https://doi.org/10.1038/nchem.1576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1576

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing