Charged and metallic molecular monolayers through surface-induced aromatic stabilization


Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of relevant energy levels and molecular structures.
Figure 2: Experimental results on structure, chemical nature and electronic structure.
Figure 3: Theoretical results on electronic structure and intramolecular distortions.
Figure 4: Evolution of metal–molecule interfacial electronic structure and mechanism of surface-induced aromatic stabilization.


  1. 1

    Netzer, F. P. & Ramsey, M. G. Structure and orientation of organic molecules on metal surfaces. Crit. Rev. Solid State 17, 397–475 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Hwang, J., Wan, A. & Kahn, A. Energetics of metal–organic interfaces: new experiments and assessment of the field. Mater. Sci. Eng. Rep. 64, 1–31 (2009).

    Article  Google Scholar 

  5. 5

    Koch, N. Organic electronic devices and their functional interfaces. Chem. Phys. Chem. 8, 1438–1455 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Hipps, K. W. Molecular electronics – it's all about contacts. Science 294, 536–537 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Glowatzki, H. et al. ‘Soft’ metallic contact to isolated C60 molecules. Nano Lett. 8, 3825–3829 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Jaeckel, B., Sambur, J. B. & Parkinson, B. A. The influence of metal work function on the barrier heights of metal/pentacene junctions. J. Appl. Phys. 103, 063719 (2008).

    Article  Google Scholar 

  9. 9

    Koch, N. et al. Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone. Org. Electron. 7, 537–545 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Koch, N., Vollmer, A., Duhm, S., Sakamoto, Y. & Suzuki, T. The effect of fluorination on pentacene/gold interface energetics and charge reorganization energy. Adv. Mater. 19, 112–116 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Koch, N. et al. Adsorption-induced intramolecular dipole: correlating molecular conformation and interface electronic structure. J. Am. Chem. Soc. 130, 7300–7304 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Crocker, L., Wang, T. B. & Kebarle, P. Electron-affinities of some polycyclic aromatic-hydrocarbons, obtained from electron-transfer equilibria. J. Am. Chem. Soc. 115, 7818–7822 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Delgado, M. C. R. et al. Impact of perfluorination on the charge-transport parameters of oligoacene crystals. J. Am. Chem. Soc. 131, 1502–1512 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Duhm, S. et al. Influence of intramolecular polar bonds on interface energetics in perfluoro-pentacene on Ag(111). Phys. Rev. B 81, 045418 (2010).

    Article  Google Scholar 

  15. 15

    Hauschild, A. et al. Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Phys. Rev. Lett. 94, 036106 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Rohlfing, M., Temirov, R. & Tautz, F. S. Adsorption structure and scanning tunneling data of a prototype organic–inorganic interface: PTCDA on Ag(111). Phys. Rev. B 76, 115421 (2007).

    Article  Google Scholar 

  17. 17

    Tautz, F. S. Structure and bonding of large aromatic molecules on noble metal surfaces: the example of PTCDA. Prog. Surf. Sci. 82, 479–520 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Bendounan, A. et al. Electronic structure of 1 ML NTCDA/Ag(111) studied by photoemission spectroscopy. Surf. Sci. 601, 4013–4017 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Kilian, L. et al. Role of intermolecular interactions on the electronic and geometric structure of a large π-conjugated molecule adsorbed on a metal surface. Phys. Rev. Lett. 100, 136103 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Ziroff, J. et al. Low-energy scale excitations in the spectral function of organic monolayer systems. Phys. Rev. B 85, 161404 (2012).

    Article  Google Scholar 

  21. 21

    Duhm, S. et al. PTCDA on Au(111), Ag(111) and Cu(111): correlation of interface charge transfer to bonding distance. Org. Electron. 9, 111–118 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Duhm, S. et al. Weak charge transfer between an acceptor molecule and metal surfaces enabling organic/metal energy level tuning. J. Phys. Chem. B 110, 21069–21072 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Koch, N. et al. Tuning the hole injection barrier height at organic/metal interfaces with (sub)monolayers of electron acceptor molecules. Appl. Phys. Lett. 87, 101905 (2005).

    Article  Google Scholar 

  24. 24

    Koch, N., Duhm, S., Rabe, J. P., Vollmer, A. & Johnson, R. L. Optimized hole injection with strong electron acceptors at organic–metal interfaces. Phys. Rev. Lett. 95, 237601 (2005).

    Article  Google Scholar 

  25. 25

    Romaner, L. et al. Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal–organic interface. Phys. Rev. Lett. 99, 256801 (2007).

    Article  Google Scholar 

  26. 26

    Rangger, G. M. et al. F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Phys. Rev. B 79, 165306 (2009).

    Article  Google Scholar 

  27. 27

    Tseng, T. C. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chem. 2, 374–379 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Toyoda, K., Hamada, I., Lee, K., Yanagisawa, S. & Morikawa, Y. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures. J. Chem. Phys. 132, 134703 (2010).

    Article  Google Scholar 

  29. 29

    Toyoda, K., Hamada, I., Lee, K., Yanagisawa, S. & Morikawa, Y. Density functional theoretical study of perfluoropentacene/noble metal interfaces with van der Waals corrections: adsorption states and vacuum level shifts. J. Phys. Chem. C 115, 5767–5772 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Amy, F., Chan, C. & Kahn, A. Polarization at the gold/pentacene interface. Org. Electron. 6, 85–91 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Tsiper, E. V., Soos, Z. G., Gao, W. & Kahn, A. Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chem. Phys. Lett. 360, 47–52 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Witte, G., Lukas, S., Bagus, P. S. & Wöll, C. Vacuum level alignment at organic/metal junctions: ‘cushion’ effect and the interface dipole. Appl. Phys. Lett. 87, 263502 (2005).

    Article  Google Scholar 

  33. 33

    Medjanik, K. et al. Electronic structure of large disc-type donors and acceptors. Phys. Chem. Chem. Phys. 12, 7184–7193 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Bröker, B. et al. Gold work function reduction by 2.2 eV with an air-stable molecular donor layer. Appl. Phys. Lett. 93, 243303 (2008).

    Article  Google Scholar 

  35. 35

    Hofmann, O. T., Rangger, G. M. & Zojer, E. Reducing the metal work function beyond Pauli pushback: a computational investigation of tetrathiafulvalene and viologen on coinage metal surfaces. J. Phys. Chem. C 112, 20357–20365 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Fernandez-Torrente, I. et al. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99, 176103 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Rissner, F. et al. Radical self-assembled monolayers on Au(111) formed by the adsorption of closed-shell molecules. J. Mater. Chem. 22, 4269–4272 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Zegenhagen, J. et al. X-ray standing waves and hard X-ray photoelectron spectroscopy at the insertion device beamline ID32. J. Electron Spectrosc. Relat. Phenom. 178, 258–267 (2010).

    Article  Google Scholar 

  39. 39

    Woodruff, D. P. Surface structure determination using X-ray standing waves. Rep. Prog. Phys. 68, 743–798 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Zegenhagen, J. Surface-structure determination with X-ray standing waves. Surf. Sci. Rep. 18, 199–271 (1993).

    Article  Google Scholar 

  41. 41

    Gerlach, A. et al. Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): an X-ray standing wave study. Phys. Rev. B 71, 205425 (2005).

  42. 42

    Gerlach, A. et al. Orientational ordering of nonplanar phthalocyanines on Cu(111): strength and orientation of the electric dipole moment. Phys. Rev. Lett. 106, 156102 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Henze, S. K. M., Bauer, O., Lee, T. L., Sokolowski, M. & Tautz, F. S. Vertical bonding distances of PTCDA on Au(111) and Ag(111): relation to the bonding type. Surf. Sci. 601, 1566–1573 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  45. 45

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).

    Article  Google Scholar 

  49. 49

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  50. 50

    Biller, A., Tamblyn, I., Neaton, J. B. & Kronik, L. Electronic level alignment at a metal–molecule interface from a short-range hybrid functional. J. Chem. Phys. 135, 164706 (2011).

    Article  Google Scholar 

Download references


The authors thank S. Hecht and Q. Xin for critically reading the manuscript, E. Zojer for fruitful discussions and O. T. Hofmann for providing the van der Waals parameters of gold. This work was supported by the Global Centres of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology (G03: Advanced School for Organic Electronics, Chiba University), and by the German Research Foundation through projects FR2726/1, SFB658, SFB951, SPP1355 and SCHR700/14-1. T.H. gratefully acknowledges an Alexander von Humboldt fellowship for foreign researchers.

Author information




G.H., S.D., I.S., C.B., S.W., A.W., R.S., J.F., B.B. and A.V. performed the XPS and UPS measurements and pre-processed the data. With A.G. leading the efforts, S.D., J.N., C.B., T.H. and B.D. performed NIXSW experiments and analysed the data. A.S., I.F-T. and G.S. performed the scanning tunnelling microscopy measurements under the guidance of K.J.F. and J.I.P. J.P. provided the purified materials. I.S. analysed the XPS and UPS data and prepared the figures. With significant input from S.K. and N.U., G.H. and S.D. interpreted the overall results. G.H. performed the calculations, coordinated the work and wrote the paper. A.G., F.S. and N.K. conceived the project and all the authors commented critically on the manuscript.

Corresponding authors

Correspondence to G. Heimel or S. Duhm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6045 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heimel, G., Duhm, S., Salzmann, I. et al. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nature Chem 5, 187–194 (2013).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing