Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures


Metal–organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale—into nanoMOFs—is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spray-drying synthesis of spherical hollow HKUST-1 superstructures.
Figure 2: Size control in spray-drying synthesis of nanoHKUST-1 crystals.
Figure 3: Series of MOF superstructures and discrete nanoMOF crystals synthesized by spray-drying.
Figure 4: Synthetic versatility in preparing MOF superstructures and nanoMOFs by spray-drying.
Figure 5: Introduction of guest species into MOF superstructures by spray-drying.


  1. 1

    Carné, A., Carbonell, C., Imaz, I. & Maspoch, D. Nanoscale metal–organic materials. Chem. Soc. Rev. 40, 291–305 (2011).

    Article  Google Scholar 

  2. 2

    Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 38, 1218–1227 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Lin, W., Rieter, W. J. & Taylor, K. M. L. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48, 650–658 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Horcajada, P. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 9, 172–178 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Rieter, W. J. et. al. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Kreno, L. E. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    Article  Google Scholar 

  9. 9

    Scherb, C., Schödel, A. & Bein, T. Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 47, 5777–5779 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem. 2, 633–637 (2010).

    CAS  Google Scholar 

  11. 11

    Bux, H. et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem. Mater. 23, 2262–2269 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Park, K. H., Jang, K., Son, S. U. & Sweigart, D. A. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene. J. Am. Chem. Soc. 128, 8740–8741 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chem. 4, 310–316 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Ni, Z. & Masel, R. I. Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Vaucher, S. & Mann, S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed. 39, 1793–1796 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Lee, H. J., Cho, W. & Oh, M. Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres. Chem. Commun. 48, 221–223 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Hu, M. et al. Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew. Chem. Int. Ed. 51, 984–988 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Yu, L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48, 27–42 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Reinhard, V. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25, 999–1022 (2008).

    Article  Google Scholar 

  21. 21

    Boissiere, C. et al. Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv. Mater. 23, 599–623 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Cheow, W. S., Li, S. & Hadinoto, K. Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem. Eng. Res. Des. 88, 673–685 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Xu, H., Tan, Z., Abe, Z. & Naito, M. Microcapsule assembly of single-walled carbon nanotubes from spray-dried hollow microspheres. J. Ceram. Soc. Jpn 119, 180–184 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Luo, P. & Nieh, T. G. Synthesis of ultrafine hydroxyapatite particles by a spray dry method. Mater. Sci. Eng. C 3, 75–78 (1995).

    Article  Google Scholar 

  25. 25

    Maas, S. G. The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Tech. 213, 27–35 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Chui, S. S-Y. et al. Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur. J. Inorg. Chem. 2338–2343 (2009).

    Article  Google Scholar 

  28. 28

    Chen, B. et al. High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew. Chem. Int. Ed. 44, 4745–4749 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Surblé, S. et al. A new isoreticular class of metal–organic frameworks with the MIL-88 topology. Chem. Commun. 284–286 (2006).

  30. 30

    Chen, B. et al. Interwoven metal–organic framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Rosi, N. L. et al. Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  33. 33

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Kaye, S. S. & Long, J. R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M=Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2006).

    Article  Google Scholar 

  35. 35

    Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Lin, X., Jia, J., Hubberstey, P., Schröder M. & Champness, N. R. Hydrogen storage in metal–organic frameworks. CrystEngComm 9, 438–448 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Li, X. A. et al. Nanospray drier nanoparticles by spray drying using innovative new technology: the Buchi Nano Spray Drier B-90. J. Control. Rel. 147, 304–310 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Chalati, T., Horcajada, P., Gref, R., Couvreur, P. & Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88a J. Mater. Chem. 21, 2220–2227 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Cychosz, K. A., Wong-Foy, A. G. & Matzger, A. J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds. J. Am. Chem. Soc. 130, 6938–6939 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Cychosz, K. A., Wong-Foy, A. G. & Matzger, A. Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers. J. Am. Chem. Soc. 131, 14538–14543 (2009).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the Servei de Microscopia of the UAB, and Carlos Carbonell for helping with the illustrations. I.I. and M.C.S. thank MICINN and ICN for a Ramón y Cajal grant and a research contract, respectively. A.C. thanks the Generalitat de Catalunya for a FI fellowship.

Author information




A.C., I.I. and M.C.S. designed the experiments, performed the syntheses and carried out the characterization, encapsulation and property studies. D.M. conceived the project and drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daniel Maspoch.

Ethics declarations

Competing interests

The authors have a patent pending on the methods described in this manuscript, filed on 4 October 2011 (European Union application number EP 11183773.8).

Supplementary information

Supplementary information

Supplementary information (PDF 7226 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M. et al. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chem 5, 203–211 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing