Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sulfur as a selective ‘soft’ oxidant for catalytic methane conversion probed by experiment and theory

Abstract

Developing efficient catalytic processes to convert methane into useful feedstocks relies critically upon devising new coupling processes that use abundant, thermodynamically ‘mild’ oxidants together with selective catalysts. We report here on elemental sulfur as a promising ‘soft’ oxidant for selective methane conversion to ethylene over MoS2, RuS2, TiS2, PdS and Pd/ZrO2 catalysts. Experiments and density functional theory reveal that methane conversion is directly correlated with surface metal–sulfur bond strengths. Surfaces with weakly bound sulfur are more basic and activate methane C–H bonds more readily. In contrast, experimental and theoretical selectivities scale inversely with surface metal–sulfur bond strengths, and surfaces with the strongest metal–sulfur bonds afford the highest ethylene selectivities. High CH4/S ratios, short contact times and the provision of a support maximizes the coupling of CHx intermediates and selectivity to ethylene, because these conditions yield surfaces with stronger metal–sulfur bonding (for example, Pd16S7), which suppresses the over-oxidation of methane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic calculations show that using gaseous sulfur (S2) as a ‘soft’ oxidant can hinder the over-oxidation of methane when compared with using O2 as the oxidant.
Figure 2: Unsupported metal sulfides are effective catalysts for the conversion of methane to ethylene using gaseous sulfur as a ‘soft’ oxidant.
Figure 3: Ab initio DFT calculations shows the characteristic reactant, transition state and product structures for the catalytic conversion of methane to ethylene using gaseous sulfur as the oxidant.
Figure 4: Calculations reveal a correlation between both C–H activation and CH2 coupling with M–S bond strength.
Figure 5: Markedly altered PdS-catalysed methane conversion and ethylene selectivity are observed by varying the CH4:S feed ratios and WHSVs over the catalyst surface.
Figure 6: A ZrO2-supported palladium sulfide catalyst exhibits significantly enhanced catalytic performance compared with an unsupported catalyst in the conversion of methane to ethylene using gaseous sulfur as the oxidant.

Similar content being viewed by others

References

  1. Tullo, A. H. Celanese takes an ethanol plunge. Chem. Eng. News 89, 20–21 (2011).

    Google Scholar 

  2. Crabtree, R. H. Aspects of methane chemistry. Chem. Rev. 95, 987–1007 (1995).

    Article  CAS  Google Scholar 

  3. Lunsford, J. H. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 63, 165–174 (2000).

    Article  CAS  Google Scholar 

  4. Holmen, A. Direct conversion of methane to fuels and chemicals. Catal. Today 142, 2–8 (2009).

    Article  CAS  Google Scholar 

  5. Horn, R., Williams, K. A., Degenstein, N. J. & Schmidt, L. D. Syngas by catalytic partial oxidation of methane on rhodium: mechanistic conclusions from spatially resolved measurements and numerical simulations. J. Catal. 242, 92–102 (2006).

    Article  CAS  Google Scholar 

  6. York, A. P. E., Xiao, T. C., Green, M. L. H. & Claridge J. B. Methane oxyforming for synthesis gas production. Catal. Rev. Sci. Eng. 49, 511–560 (2007).

    Article  CAS  Google Scholar 

  7. Bar-Nahum, I., Khenkin, A. M. & Neumann, R. Mild, aqueous, aerobic, catalytic oxidation of methane to methanol and acetaldehyde catalyzed by a supported bipyrimidinylplatinum–polyoxometalate hybrid compound. J. Am. Chem. Soc. 126, 10236–10237 (2004).

    Article  CAS  Google Scholar 

  8. Otsuka, K. & Wang, Y. Direct conversion of methane into oxygenates. Appl. Catal. A 222, 145–161 (2001).

    Article  CAS  Google Scholar 

  9. Dry, M. E. Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl. Catal. A 138, 319–344 (1996).

    Article  CAS  Google Scholar 

  10. Flores, R. M. Coalbed methane: from hazard to resource. Int. J. Coal Geol. 35, 3–26 (1998).

    Article  CAS  Google Scholar 

  11. DOE Basic Energy Sciences Advisory Committee. Directing Matter and Energy: Five Challenges for Science and the Imagination (National Academy Press, 2007).

  12. Xu, Y. D., Bao, X. H. & Lin, L. W. Direct conversion of methane under nonoxidative conditions. J. Catal. 216, 386–395 (2003).

    Article  CAS  Google Scholar 

  13. Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E. & Lercher, J. A. Methyl chloride production from methane over lanthanum-based catalysts. J. Am. Chem. Soc. 129, 2569–2576 (2007).

    Article  CAS  Google Scholar 

  14. Peringer, E., Salzinger, M., Hutt, M., Lemonidou, A. A. & Lercher J. A. Modified lanthanum catalysts for oxidative chlorination of methane. Top. Catal. 52, 1220–1231 (2009).

    Article  CAS  Google Scholar 

  15. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011) and references therein.

    Article  CAS  Google Scholar 

  16. Lang, S. M., Bernhardt, T. M., Barnett R. N. & Landman, U. Methane activation and catalytic ethylene formation on free Au2+. Angew. Chem. Int. Ed. 49, 980–983 (2010).

    Article  CAS  Google Scholar 

  17. Sorokin, A. B. et al. Oxidation of methane and ethylene in water at ambient conditions. Catal. Today 157, 149–154 (2010).

    Article  CAS  Google Scholar 

  18. Periana, R. A. et al. Mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  Google Scholar 

  19. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article  CAS  Google Scholar 

  20. An, Z. J., Pan, X. L., Liu, X. M., Han, X. W. & Bao, X. H. Combined redox couples for catalytic oxidation of methane by dioxygen at low temperatures. J. Am. Chem. Soc. 128, 16028–16029 (2006).

    Article  CAS  Google Scholar 

  21. Luzgin, M. V. et al. Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew. Chem. Int. Ed. 47, 4559–4562 (2008).

    Article  CAS  Google Scholar 

  22. Palkovits, R., Antonietti, M., Kuhn, P., Thomas, A. & Schuth, F. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew. Chem. Int. Ed. 48, 6909–6912 (2009).

    Article  CAS  Google Scholar 

  23. Gretz, E., Oliver, T. F. & Sen, A. Carbon–hydrogen bond activation by electrophilic transition-metal compounds—palladium(II)-mediated oxidation of arenes and alkanes including methane. J. Am. Chem. Soc. 109, 8109–8111 (1987).

    Article  CAS  Google Scholar 

  24. Linstrom, P. J. & Mallard, W. G. (eds) NIST Chemistry WebBook; NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2011). Available at http://webbook.nist.gov.

  25. Stull, D. R., Westrum, E. F. & Sinke, G. C. The Chemical Thermodynamics of Organic Compounds 243–244 (Wiley, 1969).

  26. Polyakov, M. et al. Mechanochemical activation of MoS2—surface properties and catalytic activities in hydrogenation and isomerization of alkenes and in H2/D2 exchange. J. Catal. 260, 236–244 (2008).

    Article  CAS  Google Scholar 

  27. Chianelli, R. R., et al. Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl. Catal. A 227, 83–96 (2002).

    Article  CAS  Google Scholar 

  28. Byskov, L. S., Norskov, J. K., Clausen, B. S. & Topsoe, H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).

    Article  CAS  Google Scholar 

  29. Besenbacher, F. et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: insight into mechanistic, structural and particle size effects. Catal. Today 130, 86–96 (2008).

    Article  CAS  Google Scholar 

  30. Corma, A., Martinez, C., Ketley, G. & Blair, G. On the mechanism of sulfur removal during catalytic cracking. Appl. Catal. A 208, 135–152 (2001).

    Article  CAS  Google Scholar 

  31. Kabe, T., Ishihara, A. & Qian, W. Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering (Wiley-VCH, 1999).

  32. Chianelli, R. R. et al. Catalytic properties of single layers of transition metal sulfide catalytic materials. Catal. Rev. Sci. Eng. 48, 1–41 (2006).

    Article  CAS  Google Scholar 

  33. Topsoe, H., Clausen, B. S. & Massoth, F. E. in Hydrotreating Catalysis—Science and Technology, Vol. 11 (eds Anderson, J.R. & Boudart, M.) (Springer, 1996).

  34. Bezverkhyy, I., Afanasiev, P., Geantet, C. & Lacroix, M. Highly active (Co)MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution. J. Catal. 204, 495–497 (2001).

    Article  CAS  Google Scholar 

  35. Wang, H. M. & Iglesia, E. Thiophene hydrodesulfurization catalysis on supported Ru clusters: mechanism and site requirements for hydrogenation and desulfurization pathways. J. Catal. 273, 245–256 (2010).

    Article  CAS  Google Scholar 

  36. Anderson, J. R., Chang, Y. F., Pratt, K. C. & Foger, K. Reaction of methane and sulfur—oxidative coupling and carbon-disulfide formation. React. Kinet. Catal. Lett. 49, 261–269 (1993).

    Article  CAS  Google Scholar 

  37. Didenko, L. P., Linde, V. R. & Savchenko, V. I. Partial catalytic oxidation and condensation of methane by oxygen and sulfur. Catal. Today 42, 367–370 (1998).

    Article  CAS  Google Scholar 

  38. Nehb, W. & Vydra, K. F. Sulfur. Ullman's Encyclopedia of Industrial Chemistry (Wiley-VCH, 2002).

  39. Stair, P. C. The application of UV Raman spectroscopy for the characterization of catalysts and catalytic reactions. Adv. Catal. 51, 75–98 (2007).

    CAS  Google Scholar 

  40. Chin, Y., Buda C., Neurock, M. & Iglesia, E. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4/O2 catalysis on supported Pt clusters. J. Catal. 283, 10–24 (2011).

    Article  CAS  Google Scholar 

  41. Chin, Y., Buda, B., Neurock, M. & Iglesia, E. Selectivity of chemisorbed oxygen in C–H bond activation and CO oxidation and kinetic consequences for CH4–O2 catalysis on Pt and Rh clusters. J. Am. Chem. Soc. 133, 15958–15978 (2011).

    Article  CAS  Google Scholar 

  42. Chin, Y. & Iglesia, E. Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4–O2 reactions on palladium. J. Phys. Chem. 115, 17845–17855 (2011).

    CAS  Google Scholar 

  43. Jüngst, E. & Nehb, W. Handbook of Heterogeneous Catalysis Ch. 12.4 (Wiley-VCH, 2008).

Download references

Acknowledgements

The authors thank the Dow Chemical Company for support as part of the Methane Challenge project. The authors thank S. Domke, P. Nickias, D. Barton and M. Kaminsky for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., S.L.W. and C.X. performed the experiments, analysed the data, and wrote portions of the manuscript. O.U. and M.N. performed DFT calculations and wrote portions of the manuscript. All authors contributed to writing and revising the manuscript.

Corresponding authors

Correspondence to Matthew Neurock or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Wegener, S., Xie, C. et al. Sulfur as a selective ‘soft’ oxidant for catalytic methane conversion probed by experiment and theory. Nature Chem 5, 104–109 (2013). https://doi.org/10.1038/nchem.1527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing