Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protonation-coupled redox reactions in planar antiaromatic meso-pentafluorophenyl-substituted o-phenylene-bridged annulated rosarins

Abstract

Proton-coupled electron transfer (PCET) processes are among the most important phenomena that control a variety of chemical and biological transformations. Although extensively studied in a variety of natural systems and discrete metal complexes, PCET mechanisms are less well codified in the case of purely organic compounds. Here we report that a planar β,β′-phenylene-bridged hexaphyrin (1.0.1.0.1.0), a 24 π-electron antiaromatic species termed rosarin, displays unique redox reactivity on protonation. Specifically, treatment with acid (for example, HI) yields a 26 π-electron aromatic triprotonated monocationic species that is produced spontaneously via an intermediate—but stable—25 π-electron non-aromatic triprotonated monoradical dication. This latter species is also produced on treatment of the original 24 π-electron antiaromatic starting material with HCl or HBr. The stepwise nature of the proton-coupled reduction observed in the planar rosarin stands in marked contrast to that seen for non-annulated rosarins and other ostensibly antiaromatic expanded porphyrinoids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformational restriction of rosarin derivatives by β,β′-phenylene bridges gives the planar 24 π-electron conjugated porphyrinoid 1.
Figure 2: Molecular structures derived from X-ray crystallographic analyses and partial 1H NMR spectra.
Figure 3: Steady-state absorption spectra of compounds 1 (black line), H31·Cl2 (red line) and H31·Cl (blue line) in CH2Cl2.
Figure 4: Cyclic voltammetry (CV) showing the protonation-induced reduction potential shifts.
Figure 5: Redox reaction cycle of 1 and reversible protonation–deprotonation pathways of 2 observed in the presence of protic acids and an organic base.

Similar content being viewed by others

References

  1. Huynh, M. H. V. & Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 107, 5004–5064 (2007).

    Article  CAS  Google Scholar 

  2. Fukuzumi, S. & Kotani, H. in Proton-Coupled Electron Transfer, a Carrefour of Chemical Reactivity Traditions (eds Formosinho, S. & Barroso, M.) 89–125 (Royal Society of Chemistry, 2012).

    Google Scholar 

  3. Costentin, C., Robert, M. & Savéant, J-M. Concerted proton–electron transfers: electrochemical and related approaches. Acc. Chem. Res. 43, 1019–1029 (2010).

    Article  CAS  Google Scholar 

  4. Weigberg, D. R. et. al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  Google Scholar 

  5. Gagliardi, C. J. et al. Integrating proton coupled electron transfer (PCET) and excited states. Coord. Chem. Rev. 254, 2459–2471 (2010).

    Article  CAS  Google Scholar 

  6. Meyer, T. J., Huynh, M. H. V. & Thorp, H. H. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 46, 5284–5304 (2007).

    Article  CAS  Google Scholar 

  7. McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).

    Article  CAS  Google Scholar 

  8. Kaila, V. R. I., Verkhovsky, M. I. & Wikström, M. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 110, 7062–7081 (2010).

    Article  CAS  Google Scholar 

  9. Litwinienko, G. & Ingold, K. U. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40, 222–230 (2007).

    Article  CAS  Google Scholar 

  10. Warren, J. J. & Mayer, J. M. Surprisingly long-lived ascorbyl radicals in acetonitrile: concerted proton–electron transfer reactions and thermochemistry. J. Am. Chem. Soc. 130, 7546–7547 (2008).

    Article  CAS  Google Scholar 

  11. Sessler, J. L. & Seidel, D. Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. 42, 5134–5175 (2003).

    Article  CAS  Google Scholar 

  12. Saito, S. & Osuka, A. Expanded porphyrins: intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 50, 4342–4373 (2011).

    Article  CAS  Google Scholar 

  13. Osuka, A. & Saito, S. Expanded porphyrins and aromaticity. Chem. Commun. 47, 4330–4339 (2011).

    Article  CAS  Google Scholar 

  14. Sessler, J. L. et al. Rosarin: a new, easily prepared hexapyrrolic expanded porphyrin. J. Am. Chem. Soc. 114, 8306–8307 (1992).

    Article  CAS  Google Scholar 

  15. Lament, B., Dobkowski, J., Sessler, J. L., Weghorn, S. J. & Waluk, J. Spectroscopy and photophysics of a highly nonplanar expanded porphyrin: 4,9,13,18,22,27-hexaethyl-5,8,14,17,23,26-hexamethyl-2,11,20-triphenylrosarin. Chem. Eur. J. 5, 3039–3045 (1999).

    Article  CAS  Google Scholar 

  16. Setsune, J., Katakami, Y. & Iizuna, N. [48]Dodecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0) and [64]hexadecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0): the largest cyclopolypyrroles. J. Am. Chem. Soc. 121, 8957–8958 (1999).

    Article  CAS  Google Scholar 

  17. Garratt, P. J. Aromaticity (Wiley, 1986).

    Google Scholar 

  18. Cho, S. et al. Defining spectroscopic features of heteroannulenic antiaromatic porphyrinoids. J. Phys. Chem. Lett. 1, 895–900 (2010).

    Article  CAS  Google Scholar 

  19. Steiner, E. & Fowler, P. W. The shell structure of π ring currents in the expanded porphyrin amethyrin. Org. Biomol. Chem. 4, 2473–2476 (2006).

    Article  CAS  Google Scholar 

  20. Wallenborn, E-U., Haldimann, R. F., Klärner, F-G. & Diederich, F. Theoretical investigation of the origin of regioselectivity in the formation of methanofullerenes by addition of diazo compounds: a model study. Chem. Eur. J. 4, 2258–2265 (1998).

    Article  CAS  Google Scholar 

  21. Yoon, M-C., Cho, S., Suzuki, M., Osuka, A. & Kim, D. Aromatic versus antiaromatic effect on photophysical properties of conformationally locked trans-vinylene-bridged hexaphyrins. J. Am. Chem. Soc. 131, 7360–7367 (2009).

    Article  CAS  Google Scholar 

  22. Yoon, Z. S. et al. Nonlinear optical properties and excited-state dynamics of highly symmetric expanded porphyrins. J. Am. Chem. Soc. 128, 14128–14134 (2006).

    Article  CAS  Google Scholar 

  23. Mori, S. et al. Peripheral fabrications of a bis-gold(III) complex of [26]hexaphyrin(1.1.1.1.1.1) and aromatic versus antiaromatic effect on two-photon absorption cross section. J. Am. Chem. Soc. 129, 11344–11345 (2007).

    Article  CAS  Google Scholar 

  24. Lim, J. M. et al. The photophysical properties of expanded porphyrins: relationships between aromaticity, molecular geometry and non-linear optical properties. Chem. Commun. 261–273 (2009).

  25. Yoon, Z. S., Osuka, A. & Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nature Chem. 1, 113–122 (2009).

    Article  CAS  Google Scholar 

  26. Choi, J-H., Ahn, I-H., Sessler, J. L. & Cho, D-C. Colorimetric iodide detection in water: a new photo-activated indicator system. Supramolecular Chem. 23, 283–286 (2011).

    Article  CAS  Google Scholar 

  27. Fukuzumi, S., Mochizuki, S. & Tanaka, T. Efficient catalytic systems for electron transfer from an NADH model compound to dioxygen. Inorg. Chem. 29, 653–659 (1990).

    Article  CAS  Google Scholar 

  28. Boschloo, G. & Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009).

    Article  CAS  Google Scholar 

  29. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  Google Scholar 

  30. Seidel, D., Lynch, V. & Sessler, J. L. Cyclo[8]pyrrole: a simple-to-make expanded porphyrin with no meso bridges. Angew. Chem. Int. Ed. 41, 1422–1425 (2002).

    Article  CAS  Google Scholar 

  31. Köhler, T. et. al. Formation and properties of cyclo[6]pyrrole and cyclo[7]pyrrole. J. Am. Chem. Soc. 125, 6872–6873 (2003).

    Article  Google Scholar 

  32. Shin, J-Y. et al. Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. Chem. Soc. Rev. 39, 2751–2767 (2010).

    Article  CAS  Google Scholar 

  33. Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article  CAS  Google Scholar 

  34. Roznyatovskiy, V., Lynch, V. & Sessler, J. L. Dinaphthoporphycenes. Org. Lett. 12, 4424–4427 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support is acknowledged from the US National Science Foundation (CHE-1057904 to J.L.S.), the Robert A. Welch Foundation (F-1018 to J.L.S.), Grant-in-Aid (No. 20108010 to S.F. and 23750014 to K.O.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the World Class University Program (R32-2010-000-10217-0 to D.K. and R31-2008-000-10010-0 to S.F.) of the Ministry of Education, Science and Technology, the Basic Science Research Programs, National Research Foundation (2009-0087013 to C-H.L), BK21, Council of Scientific and Industrial Research, India (from a senior research fellowship to T.S.) and the Department of Science and Technology India (SR/S1/IC-20/2007 to P.K.P.).

Author information

Authors and Affiliations

Authors

Contributions

J.L.S. supervised the project. M.I. designed and carried out the bulk of the experimental and theoretical work. S-J.K., C.P., V.V.R., T.S. and P.K.P. performed the syntheses. K.O. carried out the EPR experiment. J.M.L. carried out TA experiments. B.S.L. carried out two photon-absorption experiments. C.P., V.M.L. and J.S.P. carried out X-ray diffraction analyses on the crystals. M.I., C-H.L., S.F., D.K. and J.L.S. co-wrote the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to Chang-Hee Lee, Shunichi Fukuzumi, Dongho Kim or Jonathan L. Sessler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6972 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 38 kb)

Supplementary information

Crystallographic data for compound H31·Cl. (CIF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, M., Kim, SJ., Preihs, C. et al. Protonation-coupled redox reactions in planar antiaromatic meso-pentafluorophenyl-substituted o-phenylene-bridged annulated rosarins. Nature Chem 5, 15–20 (2013). https://doi.org/10.1038/nchem.1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing