Abstract
The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
1,2,4,5-Tetrazine-tethered probes for fluorogenically imaging superoxide in live cells with ultrahigh specificity
Nature Communications Open Access 14 March 2023
-
Reaction-based fluorogenic probes for detecting protein cysteine oxidation in living cells
Nature Communications Open Access 21 September 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Czarnik, A. W. Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res. 27, 302–308 (1994).
Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37, 1465–1472 (2008).
Cho, D. G. & Sessler, J. L. Modern reaction-based indicator systems. Chem. Soc. Rev. 38, 1647–1662 (2009).
Jun, M. E., Roy, B. & Ahn, K. H. 'Turn-on' fluorescent sensing with 'reactive' probes. Chem. Commun. 47, 7583–7601 (2011).
Du, J., Hu, M., Fan, J. & Peng, X. Fluorescent chemodosimeters using 'mild' chemical events for the detection of small anions and cations in biological and environmental media. Chem. Soc. Rev. 41, 4511–4535 (2012).
Nagano, T. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).
Nagano, T., Takizawa, H. & Hirobe, M. Reactions of nitric oxide with amines in the presence of dioxygen. Tetrahedron Lett. 36, 8239–8242 (1995).
Kojima, H. et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001).
Nagano, T., Gabe, Y., Urano, Y., Kikuchi, K. & Kojima, H. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367 (2004).
Sasaki, E. et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685 (2005).
Terai, T., Urano, Y., Izumi, S., Kojima, H. & Nagano, T. A practical strategy to create near-infrared luminescent probes: conversion from fluorescein-based sensors. Chem. Commun. 48, 2840–2842 (2012).
Yang, Y. J. et al. A highly selective low-background fluorescent imaging agent for nitric oxide. J. Am. Chem. Soc. 132, 13114–13116 (2010).
Song, B., Wang, G. L., Tan, M. Q. & Yuan, J. L. A europium(III) complex as an efficient singlet oxygen luminescence probe. J. Am. Chem. Soc. 128, 13442–13450 (2006).
Lippert, A. R., De Bittner, G. C. V. & Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).
Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).
Lo, L. C. & Chu, C. Y. Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun. 2728–2729 (2003).
Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol. 3, 349–349 (2007).
Du, L. P., Li, M. Y., Zheng, S. L. & Wang, B. H. Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron Lett. 49, 3045–3048 (2008).
Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).
Karton-Lifshin, N. et al. A unique paradigm for a turn-on near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. J. Am. Chem. Soc. 133, 10960–10965 (2011).
Srikun, D., Miller, E. W., Dornaille, D. W. & Chang, C. J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).
Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).
Srikun, D., Albers, A. E., Nam, C. I., Iavaron, A. T. & Chang, C. J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).
Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).
Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nature Chem. Biol. 7, 106–112 (2011).
Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA 107, 21316–21321 (2010).
Lippert, A. R., Gschneidtner, T. & Chang, C. J. Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells. Chem. Commun. 46, 7510–7512 (2010).
Du, L. P. Y., Ni, N. T. Y., Li, M. Y. & Wang, B. H. A fluorescent hydrogen peroxide probe based on a 'click' modified coumarin fluorophore. Tetrahedron Lett. 51, 1152–1154 (2010).
Charkoudian, L. K., Pham, D. M. & Franz, K. J. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J. Am. Chem. Soc. 128, 12424–12425 (2006).
Wei, Y. & Guo, M. Hydrogen peroxide triggered prochelator activation, subsequent metal chelation, and attenuation of the fenton reaction. Angew. Chem. Int. Ed. 46, 4722–4725 (2007).
Jourden, J. L. M. & Cohen, S. M. Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. Angew. Chem. Int. Ed. 49, 6795–6797 (2010).
Kuang, Y. Y., Baakrishnan, K., Gandhi, V. & Peng, X. H. Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J. Am. Chem. Soc. 133, 19278–19281 (2011).
Sella, E. & Shabat, D. Self-immolative dendritic probe for direct detection of triacetone triperoxide. Chem. Commun. 5701–5703 (2008).
Broaders, K. E., Grandhe, S. & Frechet, J. M. J. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 133, 756–758 (2011).
Cocheme, H. M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).
Abo, M. et al. Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011).
Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. J. A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).
Yang, D., Wang, H. L., Sun, Z. N., Chung, N. W. & Shen, J. G. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005 (2006).
Sun, Z. N. et al. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org. Lett. 11, 1887–1890 (2009).
Peng, T. & Yang, D. HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. Org. Lett. 12, 4932–4935 (2010).
Zhang, W. J., Guo, C., Liu, L. H., Qin, J. G. & Yang, C. L. Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Org. Biomol. Chem. 9, 5560–5563 (2011).
Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 133, 5680–5682 (2011).
Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J. & Nagano, T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175 (2003).
Shepherd, J. et al. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol. 14, 1221–1231 (2007).
Yu, F. B. A. et al. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 133, 11030–11033 (2011).
Garner, A. L. et al. Specific fluorogenic probes for ozone in biological and atmospheric samples. Nature Chem. 1, 316–321 (2009).
Lippert, A. R., New, E. J. & Chang, C. J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J. Am. Chem. Soc. 133, 10078–10080 (2011).
Peng, H. J. et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Ed. 50, 9672–9675 (2011).
Yu, F. B. A. et al. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem. Commun. 48, 2852–2854 (2012).
Montoya, L. A. & Pluth, M. D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chem. Commun. 48, 4767–4769 (2012).
Chen, S., Chen, Z. J., Ren, W. & Ai, H. W. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J. Am. Chem. Soc. 134, 9589–9592 (2012).
Qian, Y. et al. Selective fluorescent probes for live-cell monitoring of sulphide. Nature Commun. 2, 495 (2011).
Liu, C. R. et al. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed. 50, 10327–10329 (2011).
Liu, C. et al. Reaction based fluorescent probes for hydrogen sulfide. Org. Lett. 14, 2184–2187 (2012).
Maeda, H. et al. 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. Angew. Chem. Int. Ed. 44, 2922–2925 (2005).
Maeda, H. et al. A design of fluorescent probes for superoxide based on a nonredox mechanism. J. Am. Chem. Soc. 127, 68–69 (2005).
Jiang, W., Fu, Q. Q., Fan, H. Y., Ho, J. & Wang, W. A highly selective fluorescent probe for thiophenols. Angew. Chem. Int. Ed. 46, 8445–8448 (2007).
Bouffard, J., Kim, Y., Swager, T. M., Weissleder, R. & Hilderbrand, S. A. A highly selective fluorescent probe for thiol bioimaging. Org. Lett. 10, 37–40 (2008).
Pires, M. M. & Chmielewski, J. Fluorescence imaging of cellular glutathione using a latent rhodamine. Org. Lett. 10, 837–840 (2008).
Reddie, K. G. et al. Fluorescent coumarin thiols measure biological redox couples. Org. Lett. 14, 680–683 (2012).
Nguyen, B. T. & Anslyn, E. V. Indicator-displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006).
Fabbrizzi, L., Licchelli, M., Pallavicini, P., Sacchi, D. & Taglietti, A. Sensing of transition metals through fluorescence quenching or enhancement—a review. Analyst 121, 1763–1768 (1996).
Lim, M. H. & Lippard, S. J. Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes. Inorg. Chem. 43, 6366–6370 (2004).
Katayama, Y., Takahashi, S. & Maeda, M. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide (nitrogen monoxide). Anal. Chim. Acta 365, 159–167 (1998).
Franz, K. J., Singh, N. & Lippard, S. J. Metal-based NO sensing by selective ligand dissociation. Angew. Chem. Int. Ed. 39, 2120–2122 (2000).
Hilderbrand, S. A., Lim, M. H. & Lippard, S. J. Dirhodium tetracarboxylate scaffolds as reversible fluorescence-based nitric oxide sensors. J. Am. Chem. Soc. 126, 4972–4978 (2004).
Royzen, M., Dai, Z. H. & Canary, J. W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc. 127, 1612–1613 (2005).
Wu, Q. Y. & Anslyn, E. V. Catalytic signal amplification using a Heck reaction. an example in the fluorescence sensing of Cu(II). J. Am. Chem. Soc. 126, 14682–14683 (2004).
Ojida, A. et al. Bis(Dpa-Zn-II) appended xanthone: excitation ratiometric chemosensor for phosphate anions. Angew. Chem. Int. Ed. 45, 5518–5521 (2006).
Ojida, A. et al. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Chem. Asian J. 1, 555–563 (2006).
Choi, M. G., Cha, S., Lee, H., Jeon, H. L. & Chang, S. K. Sulfide-selective chemosignaling by a Cu2 complex of dipicolylamine appended fluorescein. Chem. Commun. 7390–7392 (2009).
Sasakura, K. et al. Development of a highly selective fluorescence probe for hydrogen sulfide. J. Am. Chem. Soc. 133, 18003–18005 (2011).
Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. Intramolecular reductive nitrosylation: reaction of nitric oxide and a copper(II) complex of a cyclam derivative with pendant luminescent chromophores. J. Am. Chem. Soc. 126, 6564–6565 (2004).
Lim, M. H., Xu, D. & Lippard, S. J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nature Chem. Biol. 2, 375–380 (2006).
McQuade, L. E. et al. Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc. Natl Acad. Sci. USA 107, 8525–8530 (2010).
Pluth, M. D., Chan, M. R., McQuade, L. E. & Lippard, S. J. Seminaphthofluorescein-based fluorescent probes for imaging nitric oxide in live cells. Inorg. Chem. 50, 9385–9392 (2011).
Hitomi, Y., Takeyasu, T., Funabiki, T. & Kodera, M. Detection of enzymatically generated hydrogen peroxide by metal-based fluorescent probe. Anal. Chem. 83, 9213–9216 (2011).
Song, D. et al. A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. Chem. Commun. 48, 5449–5451 (2012).
Domaille, D. W., Que, E. L. & Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nature Chem. Biol. 4, 168–175 (2008).
Que, E. L., Domaille, D. W. & Chang, C. J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008).
Chae, M. Y. & Czarnik, A. W. Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc. 114, 9704–9705 (1992).
Dujols, V., Ford, F. & Czarnik, A. W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997).
Guo, Z., Zhu, W. H., Zhu, M. M., Wu, X. M. & Tian, H. Near-infrared cell-permeable Hg2-selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chem. Eur. J. 16, 14424–14432 (2010).
Ko, S. K., Yang, Y. K., Tae, J. & Shin, I. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc. 128, 14150–14155 (2006).
Zhang, X. L., Xiao, Y. & Qian, X. H. A ratiometric fluorescent probe based on FRET for imaging Hg2 ions in living cells. Angew. Chem. Int. Ed. 47, 8025–8029 (2008).
Lee, M. H., Lee, S. W., Kim, S. H., Kang, C. & Kim, J. S. Nanomolar Hg(II) detection using Nile blue chemodosimeter in biological media. Org. Lett. 11, 2101–2104 (2009).
Shi, W. & Ma, H. Rhodamine B thiolactone: a simple chemosensor for Hg2 in aqueous media. Chem. Commun. 1856–1858 (2008).
Zhan, X.-Q., Qian, Z.-H., Zheng, H., Su, B.-Y., Lan, Z. & Xu, J.-G. Rhodamine thiospirolactone. highly selective and sensitive reversible sensing of Hg(II). Chem. Commun. 1859–1861 (2008).
Kim, J. H. et al. Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(II) ion in aqueous solution. Tetrahedron Lett. 50, 5958–5961 (2009).
Rao, A. S. et al. Reaction-based two-photon probes for mercury ions: fluorescence imaging with dual optical windows. Org. Lett. 14, 2598–2601 (2012).
Kierat, R. M. & Kramer, R. A fluorogenic and chromogenic probe that detects the esterase activity of trace copper(II). Bioorg. Med. Chem. Lett. 15, 4824–4827 (2005).
Kovacs, J. & Mokhir, A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2 detection. Inorg. Chem. 47, 1880–1882 (2008).
Chatterjee, A. et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc. 131, 2040–2041 (2009).
Zhou, Z. & Fahrni, C. J. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,π*)-1 (π,π*) inversion. J. Am. Chem. Soc. 126, 8862–8863 (2004).
Le Droumaguet, C., Wang, C. & Wang, Q. Fluorogenic click reaction. Chem. Soc. Rev. 39, 1233–1239 (2010).
Viguier, R. F. H. & Hulme, A. N. A sensitized europium complex generated by micromolar concentrations of copper(I): toward the detection of copper(I) in biology. J. Am. Chem. Soc. 128, 11370–11371 (2006).
Garner, A. L. & Koide, K. Studies of a fluorogenic probe for palladium and platinum leading to a palladium-specific detection method. Chem. Commun. 86–88 (2009).
Garner, A. L. & Koide, K. Oxidation state-specific fluorescent method for palladium(II) and platinum(IV) based on the catalyzed aromatic Claisen rearrangement. J. Am. Chem. Soc. 130, 16472–16473 (2008).
Santra, M., Ko, S. K., Shin, I. & Ahn, K. H. Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem. Commun. 46, 3964–3966 (2010).
Zhu, B. C. et al. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem. Commun. 47, 8656–8658 (2011).
Song, F. L., Watanabe, S., Floreancig, P. E. & Koide, K. Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 130, 16460–16461 (2008).
Ando, S. & Koide, K. Development and applications of fluorogenic probes for mercury(II) based on vinyl ether oxymercuration. J. Am. Chem. Soc. 133, 2556–2566 (2011).
Santra, M. et al. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem. Commun. 2115–2117 (2009).
Lin, W. Y., Cao, X. W., Ding, Y. D., Yuan, L. & Long, L. L. A highly selective and sensitive fluorescent probe for Hg2 imaging in live cells based on a rhodamine-thioamide–alkyne scaffold. Chem. Commun. 46, 3529–3531 (2010).
Taki, M., Iyoshi, S., Ojida, A., Hamachi, I. & Yamamoto, Y. Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 5938–5939 (2010).
Au-Yeung, H. Y., New, E. J. & Chang, C. J. A selective reaction-based fluorescent probe for detecting cobalt in living cells. Chem. Commun. 48, 5268–5270 (2012).
De Silva, A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997).
Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protoc. 1, 1057–1065 (2006).
Yang, Y., Zhao, Q., Feng, W. & Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. http://dx.doi.org/10.1021/cr2004103 (2012).
Acknowledgements
We thank the NIH (GM 79465), the Packard Foundation, Amgen, Astra Zeneca and Novartis for funding our laboratory's work on bioimaging. C.J.C. is an Investigator with the Howard Hughes Medical Institute. J.C. thanks the Human Frontiers Science Program for a postdoctoral fellowship and S.C.D. thanks Novartis for a graduate fellowship. We thank L. Lavis for sharing a figure template.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Chan, J., Dodani, S. & Chang, C. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chem 4, 973–984 (2012). https://doi.org/10.1038/nchem.1500
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1500
This article is cited by
-
Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice
Nature Protocols (2023)
-
1,2,4,5-Tetrazine-tethered probes for fluorogenically imaging superoxide in live cells with ultrahigh specificity
Nature Communications (2023)
-
Novel BODIPY-Fluorene-Fullerene and BODIPY-Fluorene-BODIPY Conjugates: Synthesis, Characterization, Photophysical and Photochemical Properties
Journal of Fluorescence (2023)
-
Rational design of a negative photochromic spiropyran-containing fluorescent polymeric nanoprobe for sulfur dioxide derivative ratiometric detection and cell imaging
Analytical and Bioanalytical Chemistry (2023)
-
Development of an Endoplasmic Reticulum-targeting Fluorescent Probe for the Imaging of Superoxide Anion in Living Cells
Journal of Fluorescence (2023)