Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stability of xenon oxides at high pressures

Abstract

Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe–O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (<136 GPa). However, it is possible that xenon atoms may be retained at defects in mantle silicates and oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal stability of Xe–O compounds.
Figure 2: Crystal structures, chemical bonding and stability range of Xe–O compounds.
Figure 3: Electronic structures of selected Xe–O compounds.

Similar content being viewed by others

References

  1. Levy, H. A. & Agron, P. A. The crystal and molecular structure of xenon difluoride by neutron diffraction. J. Am. Chem. Soc. 85, 241–242 (1963).

    Article  CAS  Google Scholar 

  2. Templeton, D. H., Zalkin, A., Forrester, J. D. & Williamson, S. M. Crystal and molecular structure of xenon trioxide. J. Am. Chem. Soc. 85, 817 (1963).

    Article  CAS  Google Scholar 

  3. Hoyer, S., Emmler, T. & Seppelt, K. The structure of xenon hexafluoride in the solid state. J. Fluor. Chem. 127, 1415–1422 (2006).

    Article  CAS  Google Scholar 

  4. Kim, M., Debessai, M. & Yoo, C. S. Two- and three-dimensional extended solids and metallization of compressed XeF2 . Nature Chem. 2, 784–788 (2010).

    Article  CAS  Google Scholar 

  5. Somayazulu, M. et al. Pressure-induced bonding and compound formation in xenon hydrogen solids. Nature Chem. 2, 50–53 (2010).

    Article  CAS  Google Scholar 

  6. Smith, D. F. Xenon trioxide. J. Am. Chem. Soc. 85, 816–817 (1963).

    Google Scholar 

  7. Selig, H., Claassen, H. H., Chernick C. L., Malm, J. G. & Huston, L. L. Xenon tetroxide: preparation and some properties. Science 143, 1322–1323 (1964).

    Article  CAS  Google Scholar 

  8. Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon. J. Am. Chem. Soc. 133, 6265–6269 (2011).

    Article  CAS  Google Scholar 

  9. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007).

    Article  CAS  Google Scholar 

  10. Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977).

    Article  CAS  Google Scholar 

  11. Sanloup, C., Hemley, R. J. & Mao, H. K. Evidence for xenon silicates at high pressure and temperature. Geophys. Res. Lett. 29, 1883–1886 (2002).

    Article  Google Scholar 

  12. Sanloup, C. et al. Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177 (2005).

    Article  CAS  Google Scholar 

  13. Oganov, A. R., Ma, Y., Lyakhov, A. O., Valle, M. & Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 71, 271–298 (2010).

    Article  CAS  Google Scholar 

  14. Caldwell, W. A. et al. Structure, bonding, and geochemistry of xenon at high pressures. Science 277, 930–933 (1997).

    Article  CAS  Google Scholar 

  15. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Article  Google Scholar 

  16. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 44, 227–237 (2011).

    Article  CAS  Google Scholar 

  17. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  Google Scholar 

  18. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  19. Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

    Article  CAS  Google Scholar 

  20. Bader, R. F. W. Atoms in Molecules—A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  21. Frost, J. C. et al. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412 (2004).

    Article  CAS  Google Scholar 

  22. Zhang, F. & Oganov, A. R. Valence state and spin transitions of iron in Earth's mantle silicates. Earth Planet. Sci. Lett. 249, 436–443 (2006).

    Article  CAS  Google Scholar 

  23. Oganov, A. R., Martonak, R., Laio, A., Raiteri, R. & Parrinello, M. Anisotropy of Earth's D′′ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005).

    Article  CAS  Google Scholar 

  24. Urusov, V. S. & Dudnikova, V. B. The trace-component trapping effect: experimental evidence, theoretical interpretation, and geochemical applications. Geochim. Cosmochim. Acta 62, 1233–1240 (1998).

    Article  CAS  Google Scholar 

  25. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 3865–3868 (1996).

    Article  Google Scholar 

  26. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  27. Kresse, G. & Furthmuller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  28. Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  29. Dovesi, R. et al. CRYSTAL06 User's Manual (University of Torino, 2006).

    Google Scholar 

  30. Towler, M. D. et al. Ab initio study of MnO and NiO. Phys. Rev. B 50, 5041–5054 (1994).

    Article  CAS  Google Scholar 

  31. Peterson, K. A. et al. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

    Article  CAS  Google Scholar 

  32. Gatti, C. TOPOND-98: An Electron Density Topological Program for Systems Periodic in N (N = 0–3) Dimensions (CNR-ISTM, 1999).

    Google Scholar 

  33. Gatti, C. in The Quantum Theory of Atoms in Molecules (eds Matta, C.F. & Boyd, R.J.) 165–206 (Wiley-VCH, 2007).

    Google Scholar 

  34. Keith, T. Molecules in Magnetic Fields. PhD thesis, McMaster Univ. (1993).

    Google Scholar 

  35. Shishkin, M. & Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007).

    Article  Google Scholar 

  36. Ma, Y., Oganov, A. R. & Glass, C. W. Structure of the metallic ζ-phase of oxygen and isosymmetric nature of ζ–ε phase transition: ab initio simulations. Phys. Rev. B 76, 064101 (2007).

    Article  Google Scholar 

  37. Lundegaard, L. F., Weck, G., McMahon, M. I., Desgreniers, S. & Loubeyre, P. Observation of an O8 molecular lattice in the ɛ phase of solid oxygen. Nature 443, 201–204 (2006).

    Article  CAS  Google Scholar 

  38. Sears, D. R. & Klug, H. P. Density and expansivity of solid xenon. J. Chem. Phys. 37, 3002–3006 (1962).

    Article  CAS  Google Scholar 

  39. Sonnenblick, Y., Alexander, E., Kalman, Z. & Steinberger, I. Hexagonal close packed krypton and xenon. Chem. Phys. Lett. 52, 276–278 (1977).

    Article  CAS  Google Scholar 

  40. Boehler, R., Ross, M. & Boercker, D. B. High-pressure melting curves of alkali halides. Phys. Rev. B 53, 556–563 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Calculations were performed on the CFN cluster and Blue Gene supercomputer (Brookhaven National Laboratory), Swiss Supercomputer Centre, Skif MSU supercomputer (Moscow State University) and at the Joint Supercomputer Center of the Russian Academy of Sciences (Moscow). A.R.O. thanks DARPA (grant no. W31P4Q1210008) and the National Science Foundation (grant no. EAR-1114313) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.R.O. designed the research. Q.Z. and D.Y.J. performed the calculations. Q.Z., D.Y.J., A.R.O. and C.G. interpreted data. A.O.L. and C.W.G. wrote the structure prediction code. Q.Z., D.Y.J., A.R.O. and C.G. wrote the manuscript.

Corresponding authors

Correspondence to Qiang Zhu or Artem R. Oganov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Jung, D., Oganov, A. et al. Stability of xenon oxides at high pressures. Nature Chem 5, 61–65 (2013). https://doi.org/10.1038/nchem.1497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing