Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Halogen-bonding-triggered supramolecular gel formation

Abstract

Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manipulation of gel formation and destruction through competitive intermolecular interactions.
Figure 2: Chemical formulae of the compounds used to obtain supramolecular LMWGs.
Figure 3: Gel formation by halogen bonding.
Figure 4: Halogen bonding and water inclusion in the hydrate gel 2·3·2H2O.
Figure 5: Halogen bonding gel formation by two-component mixtures based on compound 4.
Figure 6: Co-gel formation between halogen bond acceptor and halogen bond donor bis(urea)s 1 and 4.

Similar content being viewed by others

References

  1. Smith, D. K. in Organic Nanostructures (eds Atwood, J. L. & Steedin, J. W.) 111–154 (Wiley-VCH, 2008).

    Book  Google Scholar 

  2. Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008).

    Article  CAS  Google Scholar 

  3. Foster, J. A. et al. Supramolecular gels: anion-switchable media for controlling crystal growth. Nature Chem. 2, 1037–1043 (2010).

    Article  CAS  Google Scholar 

  4. Li, H., Fujiki, Y., Sada, K. & Estroff, L. A. Gel incorporation inside of organic single crystals grown in agarose hydrogels. CrystEngComm 13, 1060–1062 (2011).

    Article  CAS  Google Scholar 

  5. Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Estroff, L. A., Addadi, L., Weiner, S. & Hamilton, A. D. An organic hydrogel as a matrix for the growth of calcite crystals. Org. Biomol. Chem. 2, 137–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Van Bommel, K. J. C., Stuart, M. C. A., Feringa, B. L. & van Esch, J. Two-stage enzyme mediated drug release from LMWG hydrogels. Org. Biomol. Chem. 3, 2917–2920 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Z. et al. Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. Chem. Commun. 4414–4416 (2005).

  9. Escuder, B., Rodríguez-Llansola, F. & Miravet, J. F. Supramolecular gels as active media for organic reactions and catalysis. New J. Chem. 34, 1044–1054 (2010).

    Article  CAS  Google Scholar 

  10. Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dastidar, P. Supramolecular gelling agents: can they be designed? Chem. Soc. Rev. 37, 2699–2715 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fages, F. Metal coordination to assist molecular gelation. Angew. Chem. Int. Ed. 45, 1680–1682 (2006).

    Article  CAS  Google Scholar 

  13. Foster, J. A. & Steed, J. W. Exploiting cavities in supramolecular gels. Angew. Chem. Int. Ed. 49, 6718–6724 (2010).

    Article  CAS  Google Scholar 

  14. Maeda, H. Anion-responsive supramolecular gels. Chem. Eur. J. 14, 11274–11282 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Steed, J. W. Supramolecular gel chemistry: developments over the last decade. Chem. Commun. 47, 1379–1383 (2011).

    Article  CAS  Google Scholar 

  16. Rodríguez-Llansola, F., Escuder, B. & Miravet, J. F. Switchable perfomance of an l-proline-derived basic catalyst controlled by supramolecular gelation. J. Am. Chem. Soc. 131, 11478–11484 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Yang, H. et al. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224–8230 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hsueh, S-Y. et al. Acid/base- and anion-controllable organogels formed from a urea-based molecular switch. Angew. Chem. Int. Ed. 49, 9170–9173 (2010).

    Article  CAS  Google Scholar 

  19. Zhang, S. Y. et al. Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents. J. Am. Chem. Soc. 131, 1689–1691 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Dutta, S., Shome, A., Debnath, S. & Das, P. K. Counterion dependent hydrogelation of amino acid based amphiphiles: switching from non-gelators to gelators and facile synthesis of silver nanoparticles. Soft Matter 5, 1607–1620 (2009).

    Article  CAS  Google Scholar 

  21. Peng, F., Li, G., Liu, X., Wu, S. & Tong, Z. Redox-responsive gel–sol/sol–gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. J. Am. Chem. Soc. 130, 16166–16167 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Cravotto, G. & Cintas, P. Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem. Soc. Rev. 38, 2684–2697 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Naota, T. & Koori, H. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc. 127, 9324–9325 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Steed, J. W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem. Soc. Rev. 39, 3686–3699 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Piepenbrock, M. O. M., Lloyd, G. O., Clarke, N. & Steed, J. L. Metal- and anion-binding supramolecular gels. Chem. Rev. 110, 1960–2004 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Becker, T. et al. Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. Chem. Commun. 3900–3902 (2008).

  27. Shen, J-S., Cai, Q-G., Jiang, Y-B. & Zhang, H-W. Anion-triggered melamine based self-assembly and hydrogel. Chem. Commun. 46, 6786–6788 (2010).

    Article  CAS  Google Scholar 

  28. Lloyd, G. O. & Steed, J. W. Anion-tuning of supramolecular gel properties. Nature Chem. 1, 437–442 (2009).

    Article  CAS  Google Scholar 

  29. Piepenbrock, M-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W. Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem. Commun. 2644–2646 (2008).

  30. Lloyd, G. O., Piepenbrock, M-O. M., Foster, J. A., Clarke, N. & Steed, J. W. Anion tuning of chiral bis(urea) low molecular weight gels. Soft Matter 8, 204–216 (2012).

    Article  CAS  Google Scholar 

  31. Piepenbrock, M-O. M., Clarke, N., Foster, J. A. & Steed, J. W. Anion tuning and polymer templating in a simple low molecular weight organogelator. Chem. Commun. 47, 2095–2097 (2011).

    Article  CAS  Google Scholar 

  32. Byrne, P. et al. Metal-induced gelation in dipyridyl ureas. New J. Chem. 34, 2261–2274 (2010).

    Article  CAS  Google Scholar 

  33. Piepenbrock, M-O. M., Clarke, N. & Steed, J. W. Shear-induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli. Soft Matter 6, 3541–3547 (2010).

    Article  CAS  Google Scholar 

  34. Piepenbrock, M-O. M., Clarke, N. & Steed, J. W. Metal ion and anion based ‘tuning’ of a supramolecular metallogel. Langmuir 25, 8451–8456 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Biradha, K., Su, C-Y. & Vittal, J. J. Recent developments in crystal engineering. Cryst. Growth Des. 11, 875–886 (2011).

    Article  CAS  Google Scholar 

  36. Saha, B. K., Nangia, A. & Jaskolski, M. Crystal engineering with hydrogen bonds and halogen bonds. CrystEngComm 7, 355–358 (2005).

    Article  CAS  Google Scholar 

  37. Braga, D., Brammer, L. & Champness, N. R. New trends in crystal engineering. CrystEngComm 7, 1–19 (2005).

    Article  CAS  Google Scholar 

  38. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 47, 6114–6127 (2008).

    Article  CAS  Google Scholar 

  39. Metrangolo, P., Meyer, F., Pilati, T., Proserpio, D. M. & Resnati, G. Highly interpenetrated supramolecular networks supported by N···I halogen bonding. Chem. Eur. J. 13, 5765–5772 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc. Chem. Res. 38, 386–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Metrangolo, P. & Resnati, G. in Encyclopedia of Supramolecular Chemistry Vol. 1 (eds Atwood, J. L. & Steed, J. W.) 628–635 (Marcel Dekker, 2004).

    Book  Google Scholar 

  42. Yan, D. et al. A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. Angew. Chem. Int. Ed. 50, 12483–12486 (2011).

    Article  CAS  Google Scholar 

  43. Cavallo, G. et al. Halogen bonding: a general route in anion recognition and coordination. Chem. Soc. Rev. 39, 3772–3783 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Aakeröy, C. B., Chopade, P. D. & Desper, J. Avoiding ‘synthon crossover’ in crystal engineering with halogen bonds and hydrogen bonds. Cryst. Growth Des. 11, 5333–5336 (2011).

    Article  CAS  Google Scholar 

  45. Aakeröy, C. B., Chopade, P. D., Ganser, C. & Desper, J. Facile synthesis and supramolecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons. Chem. Commun. 47, 4688–4690 (2011).

    Article  CAS  Google Scholar 

  46. Ryan, D. M., Doran, T. M. & Nilsson, B. L. Complementary π–π interactions induce multicomponent coassembly into functional fibrils. Langmuir 27, 11145–11156 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Adarsh, N. N., Kumar, D. K. & Dastidar, P. Composites of N,N′-bis-(pyridyl) urea-dicarboxylic acid as new hydrogelators—a crystal engineering approach. Tetrahedron 63, 7386–7396 (2007).

    Article  CAS  Google Scholar 

  48. Moffat, J. R. & Smith, D. K. Controlled self-sorting in the assembly of multi-gelator gels. Chem. Commun. 316–318 (2009).

  49. Byrne, P., Turner, D. R., Lloyd, G. O., Clarke, N. & Steed, J. W. Gradual transition from NH···pyridyl hydrogen bonding to the NH···O tape synthon in pyridyl ureas. Cryst. Growth Des. 8, 3335–3344 (2008).

    Article  CAS  Google Scholar 

  50. Todd, A. M., Anderson, K. M., Byrne, P., Goeta, A. E. & Steed, J. W. Helical or polar guest-dependent z′=1.5 or z′=2 forms of a sterically hindered bis(urea) clathrate. Cryst. Growth Des. 6, 1750–1752 (2006).

    Article  CAS  Google Scholar 

  51. Ostuni, E., Kamaras, P. & Weiss, R. G. Novel X-ray method for in situ determination of gelator strand structure: polymorphism of cholesteryl anthraquinone-2-carboxylate. Angew. Chem. Int. Ed. Engl. 35, 1324–1326 (1996).

    Article  CAS  Google Scholar 

  52. George, M., Tan, G., John, V. T. & Weiss, R. G. Urea and thiourea derivatives as low molecular-mass organogelators. Chem. Eur. J. 11, 3243–3254 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Anderson, K. M. et al. Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. Angew. Chem. Int. Ed. 47, 1058–1062 (2008).

    Article  CAS  Google Scholar 

  54. Henry, M. Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules. ChemPhysChem 3, 607–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Henry, M. Nonempirical quantification of molecular interactions in supramolecular assemblies. ChemPhysChem 3, 561–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Walsh, R. B. et al. Crystal engineering through halogen bonding: complexes of nitrogen heterocycles with organic iodides. Cryst. Growth Des. 1, 165–175 (2001).

    Article  CAS  Google Scholar 

  57. Wenk, H. H. & Sander, W. 2,3,5,6-Tetrafluorophenylnitren-4-yl: a quartet-ground-state nitrene radical. Angew. Chem. Int. Ed. 41, 2742–2745 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.W.S., K.F. and J.A.F. acknowledge funding from the Engineering and Physical Sciences Research Council and GlaxoSmithKline. P.M. and G.R. thank Fondazione Cariplo (project nos 2009-2550 and 2010-1351) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.M. and J.A.F. undertook the synthesis of gelators, experimental studies and rheology measurements. K.F. carried out crystallographic measurements and PACHA calculations. P.M., G.R. and J.W.S. were responsible for the overall project concept, direction and coordination. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Pierangelo Metrangolo, Giuseppe Resnati or Jonathan W. Steed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7820 kb)

Supplementary information

Crystallographic data for the co-crystal 1-3 (CIF 20 kb)

Supplementary information

Crystallographic data for the co-crystal 2-3 (CIF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meazza, L., Foster, J., Fucke, K. et al. Halogen-bonding-triggered supramolecular gel formation. Nature Chem 5, 42–47 (2013). https://doi.org/10.1038/nchem.1496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing