Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides

Abstract

Multicyclic peptides are emerging as an exciting platform for drug and targeted ligand discovery owing to their expected greater target affinity/selectivity/stability versus linear or monocyclic peptides. However, although the precise pairing of cysteine residues in proteins is routinely achieved in nature, the rational pairing of cysteine residues within polypeptides is a long-standing challenge for the preparation of multicyclic species containing several disulfide bridges. Here, we present an efficient and straightforward approach for directing the intermolecular and intramolecular pairing of cysteine residues within peptides using a minimal CXC motif. Orthogonal disulfide pairing can be exploited in complex redox media to rationally produce dimeric peptides and bi/tricyclic peptides from fully reduced peptides containing 1–6 cysteine residues. This strategy, which does not rely on extensive manipulation of the primary sequence, post-translational modification or protecting groups, should greatly benefit the development of multicyclic peptide therapeutics and targeting ligands.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Equilibrium of peptides containing a CXC motif in a redox buffer (RSH/RSSR).
Figure 2: Selective formation and cleavage of intermolecular disulfide bonds.
Figure 3: Directed folding of peptides containing four cysteine residues to bicyclic structures.
Figure 4: Directed folding of peptides containing six cysteine residues to tricyclic structures.

References

  1. Hamada, Y. & Shioiri, T. Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem. Rev. 105, 4441–4482 (2005).

    Article  CAS  Google Scholar 

  2. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nature Chem. 3, 509–524 (2011).

    Article  CAS  Google Scholar 

  3. Nikiforovich, G. V., Kövér, K. E., Zhang, W-J. & Marshall, G. R. Cyclopentapeptides as flexible conformational templates. J. Am. Chem. Soc. 122, 3262–3273 (2000).

    Article  CAS  Google Scholar 

  4. Haubner, R. et al. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αVβ3 antagonists. J. Am. Chem. Soc. 118, 7461–7472 (1996).

    Article  CAS  Google Scholar 

  5. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  Google Scholar 

  6. Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J. A. & Fernández, J. M. Direct observation of disulfide isomerization in a single protein. Nature Chem. 3, 882–887 (2011).

    Article  CAS  Google Scholar 

  7. Mamathambika, B. S. & Bardwell, J. C. Disulfide-linked protein folding pathways. Annu. Rev. Cell Dev. Biol. 24, 211–235 (2008).

    Article  CAS  Google Scholar 

  8. Sevier, C. S. & Kaiser, C. A. Formation and transfer of disulphide bonds in living cells. Nature Rev. Mol. Cell Biol. 3, 836–847 (2002).

    Article  CAS  Google Scholar 

  9. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nature Chem. Biol. 5, 502–507 (2009).

    Article  CAS  Google Scholar 

  10. Wong, C. T. T. et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. Int. Ed. 51, 5620–5624 (2012).

    Article  CAS  Google Scholar 

  11. Hiruma-Shimizu, K. et al. Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse notch-1 receptor. J. Am. Chem. Soc. 132, 14857–14865 (2010).

    Article  CAS  Google Scholar 

  12. Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc. Natl Acad. Sci. USA 100, 8880–8885 (2003).

    Article  CAS  Google Scholar 

  13. Clark, R. J. et al. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew. Chem. Int. Ed. 49, 6545–6548 (2010).

    Article  CAS  Google Scholar 

  14. Rauschenberg, M., Bomke, S., Karst, U. & Ravoo, B. J. Dynamic peptides as biomimetic carbohydrate receptors. Angew. Chem. Int. Ed. 49, 7340–7345 (2010).

    Article  CAS  Google Scholar 

  15. Cheng, Z., Zhang, J., Ballou, D. P. & Williams, C. H. Reactivity of thioredoxin as a protein thiol–disulfide oxidoreductase. Chem. Rev. 111, 5768–5783 (2011).

    Article  CAS  Google Scholar 

  16. Woycechowsky, K. J. & Raines, R. T. The CXC motif: a functional mimic of protein disulfide isomerase. Biochemistry 42, 5387–5394 (2003).

    Article  CAS  Google Scholar 

  17. Sando, S., Narita, A. & Aoyama, Y. A facile route to dynamic glycopeptide libraries based on disulfide-linked sugar-peptide coupling. Bioorg. Med. Chem. Lett. 14, 2835–2838 (2004).

    Article  CAS  Google Scholar 

  18. Derewenda, U. et al. Structure and function of Bacillus subtilis YphP, a prokaryotic disulfide isomerase with a CXC catalytic motif. Biochemistry 48, 8664–8671 (2009).

    Article  CAS  Google Scholar 

  19. Zhang, R. & Snyder, G. H. Kinetics of disulfide exchange-reactions of monomer and dimer loops of cysteine valine cysteine peptides. Biochemistry 27, 3785–3794 (1988).

    Article  CAS  Google Scholar 

  20. Lutolf, M. P., Tirelli, N., Cerritelli, S., Cavalli, L. & Hubbell, J. A. Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjugate Chem. 12, 1051–1056 (2001).

    Article  CAS  Google Scholar 

  21. Wu, C., Belenda, C., Leroux, J-C. & Gauthier, M. A. Interplay of chemical microenvironment and redox environment on thiol–disulfide exchange kinetics. Chem. Eur. J. 17, 10064–10070 (2011).

    Article  CAS  Google Scholar 

  22. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  Google Scholar 

  23. Rostene, W., Kitabgi, P. & Parsadaniantz, S. M. Opinion—Chemokines: a new class of neuromodulator? Nature Rev. Neurosci. 8, 895–904 (2007).

    Article  CAS  Google Scholar 

  24. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J. F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chem. 3, 234–238 (2011).

    Article  CAS  Google Scholar 

  25. Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).

    Article  CAS  Google Scholar 

  26. Craik, D. J., Swedberg, J. E., Mylne, J. S. & Cemazar, M. Cyclotides as a basis for drug design. Expert Opin. Drug Discov. 7, 179–194 (2012).

    Article  CAS  Google Scholar 

  27. Fujii, N. et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew. Chem. Int. Ed. 42, 3251–3253 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.W. acknowledges a postdoctoral fellowship from the ETHZ (FEL-09 10-1).

Author information

Authors and Affiliations

Authors

Contributions

C.W. designed, performed and analysed experiments. J-C.L. and M.A.G. designed and analysed experiments. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Jean-Christophe Leroux or Marc A. Gauthier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1890 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, C., Leroux, JC. & Gauthier, M. Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides. Nature Chem 4, 1044–1049 (2012). https://doi.org/10.1038/nchem.1487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing