Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An N-bridged high-valent diiron–oxo species on a porphyrin platform that can oxidize methane

Abstract

High-valent oxo–metal complexes are involved in key biochemical processes of selective oxidation and removal of xenobiotics. The catalytic properties of cytochrome P-450 and soluble methane monooxygenase enzymes are associated with oxo species on mononuclear iron haem and diiron non-haem platforms, respectively. Bio-inspired chemical systems that can reproduce the fascinating ability of these enzymes to oxidize the strongest C–H bonds are the focus of intense scrutiny. In this context, the development of highly oxidizing diiron macrocyclic catalysts requires a structural determination of the elusive active species and elucidation of the reaction mechanism. Here we report the preparation of an Fe(IV)(µ-nitrido)Fe(IV) = O tetraphenylporphyrin cation radical species at −90 °C, characterized by ultraviolet–visible, electron paramagnetic resonance and Mössbauer spectroscopies and by electrospray ionization mass spectrometry. This species exhibits a very high activity for oxygen-atom transfer towards alkanes, including methane. These findings provide a foundation on which to develop efficient and clean oxidation processes, in particular transformations of the strongest C–H bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature UV-vis spectroscopic study of the reaction of 1 with m-CPBA.
Figure 2: Mössbauer spectra of a 57Fe-enriched sample of 3.
Figure 3

Similar content being viewed by others

References

  1. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    Article  CAS  Google Scholar 

  2. Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92, 1411–1456 (1992).

    Article  CAS  Google Scholar 

  3. Merkx, M. et al. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem. Int. Ed. 40, 2782–2807 (2001).

    Article  CAS  Google Scholar 

  4. Lippard, S. J. Hydroxylation of C–H bonds at carboxylate-bridged diiron centres. Phil. Trans. R. Soc. A 363, 861–877 (2005).

    Article  CAS  Google Scholar 

  5. Baik, M-H., Newcomb, M., Friesner, R. A. & Lippard, S. J. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103, 2385–2419 (2003).

    Article  CAS  Google Scholar 

  6. Tshuva, E. Y. & Lippard, S. J. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem. Rev. 104, 987–1012 (2004).

    Article  CAS  Google Scholar 

  7. Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010).

    Article  CAS  Google Scholar 

  8. Pettigrew, G. W., Echalier, A. & Pauleta, S. R. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases. J. Inorg. Biochem. 100, 551–567 (2006).

    Article  CAS  Google Scholar 

  9. Li, X. et al. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical. Proc. Natl Acad. Sci. USA 105, 8597–8600 (2008).

    Article  CAS  Google Scholar 

  10. Jensen, L. M. R., Sanishvili, R., Davidson, V. L. & Wilmot, C. M. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327, 1392–1394 (2010).

    Article  CAS  Google Scholar 

  11. Sorokin, A. B., Kudrik, E. V. & Bouchu, D. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Chem. Commun. 2562–2564 (2008).

  12. Sorokin, A. B. et al. Oxidation of methane and ethylene in water at ambient conditions. Catal. Today 157, 149–154 (2010).

    Article  CAS  Google Scholar 

  13. Kudrik, E. V. & Sorokin, A. B. N-bridged diiron phthalocyanine catalyzes oxidation of benzene with H2O2 via benzene oxide with NIH shift evidenced by using 1,3,5-[D3]benzene as a probe. Chem. Eur. J. 14, 7123–7126 (2008).

    CAS  PubMed  Google Scholar 

  14. Isci, U. et al. Preparation and characterization of μ-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation. Dalton Trans. 7410–7420 (2009).

  15. Afanasiev, P., Bouchu, D., Kudrik, E. V., Millet, J-M. M. & Sorokin, A. B. Stable N-bridged diiron(IV) phthalocyanine cation radical complexes: synthesis and properties. Dalton Trans. 9828–9836 (2009).

  16. Afanasiev, P., Kudrik, E. V., Millet, J-M. M., Bouchu, D. & Sorokin, A. B. High-valent diiron species generated from N-bridged diiron phthalocyanine and H2O2 . Dalton Trans. 40, 701–710 (2011).

    Article  CAS  Google Scholar 

  17. Groves, J. T., Haushalter, R. C., Nakamura, M., Nemo, T. E. & Evans, B. J. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 103, 2884–2886 (1981).

    Article  CAS  Google Scholar 

  18. Wolter, T. et al. Generation of oxoiron(IV) tetramesitylporphyrin π-cation radical complexes by m-CPBA oxidation of ferric tetramesitylporphyrin derivatives in butyronitrile at −78 °C. Evidence for the formation of six-coordinate oxoiron(IV) tetramesitylporphyrin π-cation radical complexes Fe(IV)=O(tmp)X (X=Cl, Br), by Mössbauer and X-ray absorption spectroscopy. J. Inorg. Biochem. 78, 117–122 (2000).

    Article  CAS  Google Scholar 

  19. Han, A-R. et al. Direct evidence for an iron(IV)-oxo porphyrin π-cation radical as an active oxidant in catalytic oxygenation reactions. Chem. Commun. 1076–1078 (2008).

  20. Franke, A., Fertinger, C. & van Eldik, R. Which oxidant is really responsible for P450 model oxygenation reactions? A kinetic approach. Angew. Chem. Int. Ed. 47, 5238–5242 (2008).

    Article  CAS  Google Scholar 

  21. Bell, S. R. & Groves, J. T. A highly reactive P450 model compound I. J. Am. Chem. Soc. 131, 9640–9641 (2009).

    Article  CAS  Google Scholar 

  22. Afanasiev, P. et al. Generation and characterization of high-valent iron oxo phthalocyanines. Chem. Commun. 48, 6088–6090 (2012).

    Article  CAS  Google Scholar 

  23. Seo, M. S. et al. A mononuclear non-heme iron(IV)-oxo complex which is more reactive than cytochrome P450 model compound I. Chem. Sci. 2, 1039–1045 (2011).

    Article  CAS  Google Scholar 

  24. Summerville, D. A. & Cohen, I. A. Metal–metal interactions involving metalloporphyrins. III. Conversion of tetraphenylporphinatoiron(III) azide to an N-bridged hemin dimer. J. Am. Chem. Soc. 98, 1747–1752 (1976).

    Article  CAS  Google Scholar 

  25. Floris, B., Donzello, M. P. & Ercolani, C. in The Porphyrin Handbook Vol. 18 (eds Kadish, K. M., Smith, K. M. & Guilard, R.) 1–62 (Elsevier, 2003).

  26. Trautwein, A. X., Bill, E., Bominaar, E. L. & Winkler, H. Iron-containing proteins and related analogs – complementary Mössbauer, EPR and magnetic susceptibility studies in Bioinorganic Chemistry 1–95 (Structure and Bonding Series 78, Springer, 1991).

    Google Scholar 

  27. Bocian, D. F. et al. Interaction of dioxygen with binuclear nitride-bridged iron porphyrins. Inorg. Chem. 23, 800–807 (1984).

    Article  CAS  Google Scholar 

  28. English, D. R., Hendrickson, D. N. & Suslick, K. S. Mössbauer spectra of oxidized iron porphyrins. Inorg. Chem. 22, 367–368 (1983).

    Article  CAS  Google Scholar 

  29. Strautmann, J. B. H. et al. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms. Inorg. Chem. 50, 155–171 (2011).

    Article  CAS  Google Scholar 

  30. Long, G. J., Cranshaw, T. E. & Longworth, G. The ideal Mössbauer effect absorber thickness. MERDJ 6, 42–49 (1983).

    Google Scholar 

  31. English, D. R., Hendrickson, D. N. & Suslick, K. S. (μ-Nitrido)bis[(5,10,15,20-tetraphenylporphyrinato)iron](2+), an iron(IV) porphyrin π-radical cation. Inorg. Chem. 24, 121–122 (1985).

    Article  CAS  Google Scholar 

  32. Gold, A. et al. Oxoferryl complexes of the halogenated (porphyrinato)iron catalyst: (tetrakis(2,6-dichlorophenyl)porphyrinato)iron. J. Am. Chem. Soc. 110, 5756–5761 (1988).

    Article  CAS  Google Scholar 

  33. Bill, E. et al. Evidence for variable metal-radical spin coupling in oxoferrylporphyrin cation radical complexes. Eur. J. Biochem. 188, 665–672 (1990).

    Article  CAS  Google Scholar 

  34. Mandon, D. et al. Models for peroxidase compound I: generation and spectroscopic characterization of new oxoferrylporphyrin π–cation radical species. Inorg. Chem. 31, 4404–4409 (1992).

    Article  CAS  Google Scholar 

  35. Jüstel, T. et al. The molecular and electronic structure of symmetrically and asymmetrically coordinated, non-heme iron complexes containing [Fe(III)(μ-N)Fe(IV)]4+ (S = 3/2) and [Fe(IV)(μ-N)Fe(IV)]5+ (S = 0) cores. Chem. Eur. J. 5, 793–810 (1999).

    Article  Google Scholar 

  36. Jüstel, T. et al. μ-Nitridodiiron complexes with asymmetric [Fe(IV)≡N–Fe(III)]4+ and symmetric [Fe(IV)=N=Fe(IV)]5+ structural elements. Angew. Chem. Int. Ed. Engl. 34, 669–672 (1995).

    Article  Google Scholar 

  37. Que, L. Jr The road to non-heme oxoferryls and beyond. Acc. Chem. Res. 40, 493–500 (2007).

    Article  CAS  Google Scholar 

  38. Müther, M. et al. Spin-coupling in distorted high-valent Fe(IV)–porphyrin radical complexes. Hyperfine Interact. 91, 803–808 (1994).

    Article  Google Scholar 

  39. Sorokin, A., Robert, A. & Meunier, B. Intramolecular kinetic isotope effects in alkane hydroxylations catalyzed by manganese and iron porphyrin complexes. J. Am. Chem. Soc. 115, 7293–7299 (1993).

    Article  CAS  Google Scholar 

  40. Ghosh, A. et al. Catalytically active μ-oxodiiron(IV) oxidants from iron(III) and dioxygen. J. Am. Chem. Soc. 127, 2505–2513 (2005).

    Article  CAS  Google Scholar 

  41. Wang, D., Farquhar, E. R., Stubna, A., Münck, E. & Que, L. Jr A diiron(IV) complex that cleaves strong C–H and O–H bonds. Nature Chem. 1, 145–150 (2009).

  42. Xue, G., De Hont, R., Münck, E. & Que, L. Jr Million-fold activation of the [Fe2(μ-O)2] diamond core for C–H bond cleavage. Nature Chem. 2, 400–405 (2010).

    Article  CAS  Google Scholar 

  43. Costas, M. Selective C–H oxidation catalyzed by metalloporphyrins. Coord. Chem. Rev. 255, 2912–2932 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant ANR-08-BLANC-0183-01 from Agence National de la Recherche (ANR, France). The Rhône-Alpes region is acknowledged for the financial support SRESR-CIBLE 2008 and CIBLE 07 016335. We thank B. Albela and L. Bonneviot for the help with EPR measurements.

Author information

Authors and Affiliations

Authors

Contributions

E.V.K., P.A., J.M.L., G.B. and A.B.S. conceived and designed the experiments. E.V.K., P.A., L.X.A., P.D., M.C., D.B., F.A. and S.E.N. performed the experiments. P.A., M.C., J.M.L., G.B. and A.B.S. analysed the data. J.M.L., G.B. and A.B.S. co-wrote the manuscript.

Corresponding authors

Correspondence to Geneviève Blondin or Alexander B. Sorokin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1612 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 21 kb)

Supplementary information

Crystallographic data for compound 1a. (CIF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudrik, E., Afanasiev, P., Alvarez, L. et al. An N-bridged high-valent diiron–oxo species on a porphyrin platform that can oxidize methane. Nature Chem 4, 1024–1029 (2012). https://doi.org/10.1038/nchem.1471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing