Abstract
A recent synthesis of activated pyrimidine ribonucleotides under prebiotically plausible conditions relied on mixed oxygenous and nitrogenous systems chemistry. As it stands, this synthesis provides support for the involvement of RNA in the origin of life, but such support would be considerably strengthened if the sugar building blocks for the synthesis—glycolaldehyde and glyceraldehyde—could be shown to derive from one carbon feedstock molecules using similarly mixed oxygenous and nitrogenous systems chemistry. Here, we show that these sugars can be formed from hydrogen cyanide by ultraviolet irradiation in the presence of cyanometallates in a remarkable systems chemistry process. Using copper cyanide complexes, the process operates catalytically to disproportionate hydrogen cyanide, first generating the sugars and then sequestering them as simple derivatives.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Thiophosphate photochemistry enables prebiotic access to sugars and terpenoid precursors
Nature Chemistry Open Access 13 July 2023
-
Behaviour and the Origin of Organisms
Origins of Life and Evolution of Biospheres Open Access 11 May 2023
-
Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies
Nature Communications Open Access 19 August 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Woese, C. The Genetic Code 179–195 (Harper & Row, 1967).
Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).
Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Szostak, J. W. Systems chemistry on early Earth. Nature 459, 171–172 (2009).
Butlerow, A. Bildung einer zuckerartigen substanz durch synthese. Liebigs Ann. Chem. 120, 295–298 (1861).
Miller, S. L. & Orgel, L. E. The Origins of Life on the Earth 109–112 (Prentice-Hall, 1974).
Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196 (2004).
Breslow, R. & Cheng, Z.-L. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl Acad. Sci. USA 106, 9144–9146 (2009).
Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).
Socha, R. F., Weiss, A. H. & Sakharov, M. M. Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. J. Catal. 67, 207–217 (1981).
Decker, P., Schweer, H. & Pohlmann, R. Bioids: X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography–mass spectrometry of n-butoxime trifluoroacetates on OV-225 J. Chromatogr. A 244, 281–291 (1982).
Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosphere 18, 71–85 (1988).
Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew. Chem. Int. Ed. 50, 12412–12472 (2011).
Fischer, E. Reduction von säuren der Zuckergruppe. Ber. Dtsch Chem. Ges. 22, 2204–2205 (1889).
Morrison, J. D. & Mosher, H. S. Asymmetric Organic Reactions 133–141 (Prentice-Hall, 1971).
Serianni, A. S., Clark, E. L. & Barker, R. Carbon-13-enriched carbohydrates. Preparation of erythrose, threose, glyceraldehyde, and glycolaldehyde with 13C-enrichment in various carbon atoms. Carbohydr. Res. 72, 79–91 (1979).
Schlesinger, G. & Miller, S. L. Equilibrium and kinetics of glyconitrile formation in aqueous solution. J. Am. Chem. Soc. 95, 3729–3735 (1973).
Eschenmoser, A. & Loewenthal, E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 21, 1–16 (1992).
Ferris, J. P. & Hagan, W. J. Jr. HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 1093–1120 (1984).
Donn, B. Comets: chemistry and chemical evolution. J. Mol. Evol. 18, 157–160 (1982).
Tokunaga, A. T., Beck, S. C., Geballe, T. R., Lacey, J. H. & Serabyn, E. The detection of HCN on Jupiter. Icarus 48, 283–289 (1981).
Hanel R. et al. Infrared observations of the Saturnian system from Voyager 1. Science 212, 192–200 (1981).
Snyder, L. E. & Buhl, D. Observations of radio emission from interstellar hydrogen cyanide. Astrophys. J. Lett. 163, L47–L52 (1971).
Strecker, A. Ueber einen neuen aus aldehyd-ammoniak und blausäure entstehenden Körpe. Liebigs Ann. Chem. 91, 349–351 (1854).
Oró, J. Synthesis of adenine from hydrogen cyanide. Biochem. Biophys. Res. Commun. 2, 407–412 (1960).
Niketić, V., Draganić, Z. D., Nešković, S., Jovanović, S. & Draganić, I. G. Radiolysis of aqueous solutions of hydrogen cyanide (pH ~ 6): compounds of interest in chemical evolution studies. J. Mol. Evol. 19, 184–191 (1983).
Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370 (1975).
Adamson, A. W. et al. Photochemistry of transition metal coordination compounds. Chem. Rev. 68, 541–585 (1968).
Orgel L. E. in The Origin of Life and Evolutionary Biochemistry (eds Dose, K., Fox, S. W., Deborin, G. A. & Pavlovskaya, T. E.) 369–371 (Plenum, 1974).
Arrhenius, T., Arrhenius, G. & Paplawsky, W. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig. Life Evol. Biosphere 24, 1–17 (1994).
Keefe, A. D. & Miller, S. L. Was ferrocyanide a prebiotic reagent? Orig. Life Evol. Biosphere 26, 111–129 (1996).
Horváth, A., Papp, S. & Décsy, Z. Formation of aquated electrons and the individual quantum yields for photoactive species in the Cu(I)–KCN–H2O system. J. Photochem. 24, 331–339 (1984).
Katagiri, A., Yoshimura, S. & Yoshizawa, S. Formation constant of the tetracyanocuprate(II) ion and the mechanism of its decomposition. Inorg. Chem. 20, 4143–4147 (1981).
Tavernier, D., Van Damme, S., Ricquier, P. & Anteunis, M. J. O. A convenient preparation of 3H-1,3-oxazol-2-one and its N-formyl derivative. Bull. Soc. Chim. Belg. 97, 859–865 (1988).
Kovács, J., Pintér, I., Lendering, U. & Köll, P. Transformation of aldoses into glycosylamine 1,2-(cyclic carbamates) (glyco-oxazolidin-2-ones) by reaction with potassium cyanate. Carbohydr. Res. 210, 155–166 (1991).
Behar, D. & Fessenden, R. W. An electron spin resonance investigation of the reactions in irradiated aqueous solutions of hydrogen cyanide and the cyanide ion. J. Phys. Chem. 76, 3945–3950 (1972).
Moutou, G. et al. Equilibrium of α-aminoacetonitrile formation from formaldehyde, hydrogen cyanide and ammonia in aqueous solution: industrial and prebiotic significance. J. Phys. Org. Chem. 8, 721–730 (1995).
Wang, Y. L., Lee, H. D., Beach, M. W. & Margerum, D. W. Kinetics of base hydrolysis of cyanogen and 1-cyanoformamide. Inorg. Chem. 26, 2444–2449 (1987).
Acknowledgements
This work was funded by the Engineering and Physical Sciences Research Council through the provision of a postdoctoral fellowship (to D.R.) and by the Medical Research Council (project no. MC_UP_A024_1009). The authors thank S. Freund and T. Rutherford for assistance with NMR spectroscopy.
Author information
Authors and Affiliations
Contributions
J.D.S. and D.R. conceived and designed the experiments. D.R. performed the experiments. J.D.S. and D.R. analysed the data and co-wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 0 kb)
Rights and permissions
About this article
Cite this article
Ritson, D., Sutherland, J. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature Chem 4, 895–899 (2012). https://doi.org/10.1038/nchem.1467
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.1467
This article is cited by
-
Thiophosphate photochemistry enables prebiotic access to sugars and terpenoid precursors
Nature Chemistry (2023)
-
Behaviour and the Origin of Organisms
Origins of Life and Evolution of Biospheres (2023)
-
Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway
Nature Chemistry (2022)
-
Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies
Nature Communications (2022)
-
UV-driven chemistry as a signpost of late-stage planet formation
Nature Astronomy (2022)