Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hidden complexity in the isomerization dynamics of Holliday junctions

Abstract

A plausible consequence of the rugged folding energy landscapes inherent to biomolecules is that there may be more than one functionally competent folded state. Indeed, molecule-to-molecule variations in the folding dynamics of enzymes and ribozymes have recently been identified in single-molecule experiments, but without systematic quantification or an understanding of their structural origin. Here, using concepts from glass physics and complementary clustering analysis, we provide a quantitative method to analyse single-molecule fluorescence resonance energy transfer (smFRET) data, thereby probing the isomerization dynamics of Holliday junctions, which display such heterogeneous dynamics over a long observation time (Tobs ≈ 40 s). We show that the ergodicity of Holliday junction dynamics is effectively broken and that their conformational space is partitioned into a folding network of kinetically disconnected clusters. Theory suggests that the persistent heterogeneity of Holliday junction dynamics is a consequence of internal multiloops with varying sizes and flexibilities frozen by Mg2+ ions. An annealing experiment using Mg2+ pulses lends support to this idea by explicitly showing that interconversions between trajectories with different patterns can be induced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Holliday junction dynamics probed with smFRET experiments and their analysis using a conventional ensemble averaging method.
Figure 2: Molecule-to-molecule variation (or molecular heterogeneity) manifested in the time traces of isomerization dynamics of Holliday junctions.
Figure 3: Probing ergodicity breaking.
Figure 4: Partitioning the molecules into distinct clusters.
Figure 5: Structural model to account for the origin of molecule-to-molecule variation in the Holliday junction dynamics.
Figure 6: Mg2+ pulse experiments to reset the molecular population in conformational space.

Similar content being viewed by others

References

  1. Frieden, C. Slow transitions and hysteretic behavior in enzymes. Annu. Rev. Biochem. 48, 471–489 (1979).

    Article  CAS  Google Scholar 

  2. Schmid, F. X. & Blaschek, H. A. Native-like intermediate on the ribonuclease A folding pathway. Eur. J. Biochem. 114, 111–117 (1981).

    Article  CAS  Google Scholar 

  3. Honeycutt, J. D. & Thirumalai, D. Metastability of the folded states of globular proteins. Proc. Natl Acad. Sci. USA 87, 3526–3529 (1990).

    Article  CAS  Google Scholar 

  4. Anfinsen, C. B. & Scheraga, H. A. Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205–300 (1975).

    Article  CAS  Google Scholar 

  5. Silverman, S. K., Deras, M. L., Woodson, S. A., Scaringe, S. A. & Cech, T. R. Multiple folding pathways for the P4–P6 RNA domain. Biochemistry 39, 12465–12475 (2000).

    Article  CAS  Google Scholar 

  6. Treiber, D. K. & Williamson, J. R. Exposing the kinetic traps in RNA folding. Curr. Opin. Struct. Biol. 9, 339–345 (1999).

    Article  CAS  Google Scholar 

  7. Russell, R. et al. Exploring the folding landscape of a structured RNA. Proc. Natl Acad. Sci. USA 99, 155–160 (2002).

    Article  CAS  Google Scholar 

  8. Thirumalai, D. & Hyeon, C. RNA and protein folding: common themes and variations. Biochemistry 44, 4957–4970 (2005).

    Article  CAS  Google Scholar 

  9. Xie, Z., Srividya, N., Sosnick, T. R., Pan, T. & Scherer, N. F. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proc. Natl Acad. Sci. USA 101, 534–539 (2004).

    Article  CAS  Google Scholar 

  10. Onoa, B. et al. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299, 1892–1895 (2003).

    Article  CAS  Google Scholar 

  11. Zhuang, X. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002).

    Article  CAS  Google Scholar 

  12. Ditzler, M. A., Rueda, D., Mo, J., Hakansson, K. & Walter, N. G. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res. 36, 7088–7099 (2008).

    Article  CAS  Google Scholar 

  13. Mickler, M. et al. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations. Proc. Natl Acad. Sci. USA 104, 20268–20273 (2007).

    Article  CAS  Google Scholar 

  14. Frauenfelder, H., Parak, F. & Young, R. Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  Google Scholar 

  15. Okumus, B., Wilson, T. J., Lilley, D. M. J. & Ha, T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are instrinsic. Biophys. J. 87, 2798–2806 (2004).

    Article  CAS  Google Scholar 

  16. Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463, 681–684 (2010).

    Article  CAS  Google Scholar 

  17. Borman, S. The more the merrier: new evidence proves that RNAs can take on multiple folded forms, just as proteins do. Chem. Eng. News 88, 36–37 (2010).

    Article  Google Scholar 

  18. Pelkmans, L. Using cell-to-cell variability—a new era in molecular biology. Science 336, 425–426 (2012).

    Article  CAS  Google Scholar 

  19. Rasnik, I., McKinney, S. A. & Ha, T. Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548 (2005).

    Article  CAS  Google Scholar 

  20. Flomenbom, O. & Silbey, R. J. Utilizing the information content in two-state trajectories. Proc. Natl Acad. Sci. USA 103, 10907–10910 (2006).

    Article  CAS  Google Scholar 

  21. Li, C.-B., Yang, H. & Komatsuzaki, T. Multiscale complex network of protein conformational fluctuations in single-molecule time series. Proc. Natl Acad. Sci. USA 105, 536–541 (2008).

    Article  CAS  Google Scholar 

  22. Ma, S. K. Statistical Mechanics (World Scientific, 1985).

    Book  Google Scholar 

  23. Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008).

    Article  CAS  Google Scholar 

  24. Thirumalai, D., Mountain, R. D. & Kirkpatrick, T. R. Ergodic behavior in supercooled liquids and in glasses. Phys. Rev. A 39, 3563–3574 (1989).

    Article  CAS  Google Scholar 

  25. Kirkpatrick, T. & Thirumalai, D. Random solution from regular density functional Hamiltonian—a static and dynamical theory for the structural glass transition. J. Phys. A 22, L149–L155 (1989).

    Article  Google Scholar 

  26. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907–2912 (1999).

    Article  CAS  Google Scholar 

  27. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).

    Article  CAS  Google Scholar 

  28. Joo, C., McKinney, S. A., Lilley, D. M. J. & Ha, T. Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J. Mol. Biol. 341, 739–751 (2004).

    Article  CAS  Google Scholar 

  29. Lushnikov, A. Y., Bogdanov, A. & Lyubchenko, Y. L. DNA recombination: Holliday junctions dynamics and branch migration. J. Biol. Chem. 278, 43130–43134 (2003).

    Article  CAS  Google Scholar 

  30. Duckett, D., Murchie, A. & Lilley, D. The role of metal ions in the conformation of the four-way DNA junction. EMBO J. 9, 583–590 (1990).

    Article  CAS  Google Scholar 

  31. Gardiner, C. W. Handbook of Stochastic Methods 2nd edn (Springer-Verlag, 1985).

    Google Scholar 

  32. Tan, E. et al. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl Acad. Sci. USA 100, 9308–9313 (2003).

    Article  CAS  Google Scholar 

  33. Greenfeld, M., Solomatin, S. V. & Herschlag, D. Removal of covalent heterogeneity reveals simple folding behavior for P4–P6 RNA. J. Biol. Chem. 286, 19872–19879 (2011).

    Article  CAS  Google Scholar 

  34. Thirumalai, D. & Mountain, R. Ergodic convergence properties of supercooled liquids and glasses. Phys. Rev. A 42, 4574–4578 (1990).

    Article  CAS  Google Scholar 

  35. Zwanzig, R. Diffusion in rough potential. Proc. Natl Acad. Sci. USA 85, 2029–2030 (1988).

    Article  CAS  Google Scholar 

  36. Hyeon, C. & Thirumalai, D. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Natl Acad. Sci. USA 100, 10249–10253 (2003).

    Article  CAS  Google Scholar 

  37. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  38. Chung, H., McHale, K., Louis, J. & Eaton, W. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335, 981–984 (2012).

    Article  CAS  Google Scholar 

  39. Panyutin, I. G. & Hsieh, P. The kinetics of spontaneous DNA branch migration. Proc. Natl Acad. Sci. USA 91, 2021–2025 (1994).

    Article  CAS  Google Scholar 

  40. Iqbal, A. et al. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proc. Natl Acad. Sci. USA 105, 11176–11181 (2008).

    Article  CAS  Google Scholar 

  41. Al-Hashimi, H. & Walter, N. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Research Foundation of Korea (2010-0000602 to C.H.), the Creative Research Initiatives (Physical Genetics Laboratory, 2009-0081562 to S.H.) and the National Science Foundation (grant CHE 09-14033 to D.T.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and S.H. carried out smFRET measurements on Holliday junctions under varying Mg2+ concentrations and Mg2+ pulse. C.H. carried out the smFRET data analysis. J.Y. carried out all-atom molecular dynamics simulations to determine the radial distribution of Mg2+ ions around the Holliday junctions. C.H. and D.T. conceived and directed the project, and prepared the manuscript.

Corresponding authors

Correspondence to Changbong Hyeon or D. Thirumalai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyeon, C., Lee, J., Yoon, J. et al. Hidden complexity in the isomerization dynamics of Holliday junctions. Nature Chem 4, 907–914 (2012). https://doi.org/10.1038/nchem.1463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing