Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrode-assisted catalytic water oxidation by a flavin derivative

Abstract

The success of solar fuel technology relies on the development of efficient catalysts that can oxidize or reduce water. All molecular water-oxidation catalysts reported thus far are transition-metal complexes, however, here we report catalytic water oxidation to give oxygen by a fully organic compound, the N(5)-ethylflavinium ion, Et-Fl+. Evolution of oxygen was detected during bulk electrolysis of aqueous Et-Fl+ solutions at several potentials above +1.9 V versus normal hydrogen electrode. The catalysis was found to occur on glassy carbon and platinum working electrodes, but no catalysis was observed on fluoride-doped tin-oxide electrodes. Based on spectroelectrochemical results and preliminary calculations with density functional theory, one possible mechanistic route is proposed in which the oxygen evolution occurs from a peroxide intermediate formed between the oxidized flavin pseudobase and the oxidized carbon electrode. These findings offer an organic alternative to the traditional water-oxidation catalysts based on transition metals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental and simulated cyclic voltammograms of Et-Fl+.
Figure 2: Detection of molecular oxygen during electrocatalytic water oxidation by Et-Fl+ at different potentials.
Figure 3: Study of H2O2 formation using rotating C disk–Pt ring voltammograms.
Figure 4: The effect of the working electrode on catalytic water oxidation.
Figure 5: Spectroelectrochemistry of Et-Fl+ in the absence and in the presence of water and a comparison to that of Et-FlOH.
Figure 6: Proposed mechanism for catalytic water oxidation by Et-Fl+.

References

  1. 1

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Gray, H. B. Powering the planet with solar fuel. Nature Chem. 1, 7 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Hernandez-Pagan, E. A., Wang, W. & Mallouk, T. E. Template electrodeposition of single-phase p- and n-type copper indium diselenide (CuInSe2) nanowire arrays. ACS Nano 5, 3237–3241 (2011).

    CAS  Article  Google Scholar 

  5. 5

    McFarlane, S. L. et al. Designing electronic/ionic conducting membranes for artificial photosynthesis. Energy Environ. Sci. 4, 1700–1703 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Betley, T. A., Wu, Q., Van Voorhis, T. & Nocera, D. G. Electronic design criteria for O–O bond formation via metal–oxo complexes. Inorg. Chem. 47, 1849–1861 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Liu, F. et al. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 47, 1727–1752 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Brimblecombe, R., Dismukes, G. C., Swiegers, G. F. & Spiccia, L. Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Trans. 9374–9384 (2009).

  11. 11

    Concepcion, J. J., Tsai, M. K., Muckerman, J. T. & Meyer, T. J. Mechanism of water oxidation by single-site ruthenium complex catalysts. J. Am. Chem. Soc. 132, 1545–1557 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Nyhlen, J. et al. Evolution of O2 in a seven-coordinate RuIV dimer complex with a [HOHOH] bridge: a computational study. Angew. Chem. Int. Ed. 49, 1773–1777 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Sala, X. et al. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842–2852 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Zong, R. & Thummel, R. P. A new family of Ru complexes for water oxidation. J. Am. Chem. Soc. 127, 12802–12803 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Kohl, S. W. et al. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science 324, 74–77 (2009).

    CAS  Article  Google Scholar 

  16. 16

    McDaniel, N. D., Coughlin, F. J., Tinker, L. L. & Bernhard, S. Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc. 130, 210–217 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Kunkely, H. & Vogler, A. Water splitting by light with osmocene as photocatalyst. Angew. Chem. Int. Ed. 48, 1685–1687 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Limburg, J. et al. A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283, 1524–1527 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Guenes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Ham, M-H. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nature Chem. 2, 929–936 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Sichula, V. et al. Mechanism of N(5)-ethyl-flavinium cation formation upon electrochemical oxidation of N(5)-ethyl-4a-hydroxyflavin pseudobase. J. Phys. Chem. B 114, 9452–9461 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Sichula, V. et al. Electronic properties of N(5)-ethyl flavinium ion. J. Phys. Chem. A 46, 12138–12147 (2010).

    Article  Google Scholar 

  27. 27

    Gallagher, K. G. & Fuller, T. F. Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments. Phys. Chem. Chem. Phys. 11, 11557–11567 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Ruttinger, W. & Dismukes, G. C. Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1–24 (1997).

    Article  Google Scholar 

  29. 29

    Sawyer, D. T. et al. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 54, 1720–1724 (1982).

    CAS  Article  Google Scholar 

  30. 30

    Cady, C. W., Crabtree, R. H. & Brudvig, G. W. Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 252, 444–455 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    CAS  Article  Google Scholar 

  32. 32

    Collin, J. P. & Sauvage, J. P. Synthesis and study of mononuclear ruthenium(II) complexes of sterically hindering diimine chelates. Implications for the catalytic oxidation of water to molecular oxygen. Inorg. Chem. 25, 135–141 (1986).

    CAS  Article  Google Scholar 

  33. 33

    Concepcion, J. J., Jurss, J. W., Hoertz, P. G. & Meyer, T. J. Catalytic and surface-electrocatalytic water oxidation by redox mediator–catalyst assemblies. Angew. Chem. Int. Ed. 48, 9473–9476 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Kinoshita, K. Carbon: Electrochemical and Physicochemical (Wiley, 1988).

  35. 35

    Gong, K. P. et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Qu, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Mager, H. I. X. et al. Reversible one-electron generation of 4a,5-substituted flavin radical cations – models for a postulated key intermediate in bacterial bioluminescence. J. Am. Chem. Soc. 110, 3759–3762 (1988).

    CAS  Article  Google Scholar 

  38. 38

    Zhou, D. et al. Fast excited-state deactivation in N(5)-ethyl-4a-hydroxyflavin pseudobase. J. Phys. Chem. B 115, 7136–7143 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Harris, P. J. F. Structure of non-graphitising carbons. Int. Mater. Rev. 42, 206–218 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Lafleur, A. L. et al. Identification of C20H10 dicyclopentapyrenes in flames: correlation with corannulene and fullerene formation. J. Phys. Chem. 100, 17421–17428 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Creegan, K. M. et al. Synthesis and characterization of C60O, the 1st fullerene epoxide. J. Am. Chem. Soc. 114, 1103–1105 (1992).

    CAS  Article  Google Scholar 

  42. 42

    He, H., Swami, N. & Koel, B. E. Reaction of C60 with oxygen adatoms on Pt(111). J. Chem. Phys. 110, 1173–1179 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Steckel, J. A., Jordan, K. D. & Avouris, P. Oxygen atom reactions with circumtrindene and related molecules: analogues for the oxidation of nanotube caps. J. Phys. Chem. A 106, 2572–2579 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Rudolph, M., Reddy, D. P. & Feldberg, S. W. A simulator for cyclic voltammetric responses. Anal. Chem. 66, 589A–600A (1994).

    CAS  Article  Google Scholar 

  45. 45

    Hua, F. et al. Luminescent charge-transfer platinum(II) metallacycle. Inorg. Chem. 46, 8771–8783 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Frisch, M. J. et al. Gaussian 09, Revision A.1. (Gaussian, 2009).

  47. 47

    Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Article  Google Scholar 

  48. 48

    Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Article  Google Scholar 

  49. 49

    Tomasi, J. & Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. J. Meyer and C. L. Hill for their useful insights, and F. N. Castellano and T. E. Mallouk for their help with spectroelectrochemical and RRDE experiments. This work was supported by Bowling Green State University, National Science Foundation (CHE-1055397 CAREER award to K.D.G. and CHE-0743258 for C.M.H.) and the Ohio Supercomputer Center. S.V. acknowledges an Ohio State University Presidential Fellowship.

Author information

Affiliations

Authors

Contributions

R.K. and T.C. synthesized Et-Fl+ and Et-FlOH. E.M. performed cyclic voltammetry, bulk electrolysis and spectroelectrochemistry and co-wrote the paper. J.W. and N.M.V-B. performed the RRDE experiments. J.W. performed the mass spectrometry experiments. S.V., S.O., S.F.M. and C.M.H. performed theoretical calculations. K.D.G. designed the research, analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Ksenija D. Glusac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1463 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirzakulova, E., Khatmullin, R., Walpita, J. et al. Electrode-assisted catalytic water oxidation by a flavin derivative. Nature Chem 4, 794–801 (2012). https://doi.org/10.1038/nchem.1439

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing