Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ab initio carbon capture in open-site metal–organic frameworks

Abstract

During the formation of metal–organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated ‘open’ metal sites known to have a strong affinity for CO2 molecules, but their interactions are still poorly understood. Common force fields typically underestimate by as much as two orders of magnitude the adsorption of CO2 in open-site Mg-MOF-74, which has emerged as a promising MOF for CO2 capture. Here we present a systematic procedure to generate force fields using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field generated for CO2 in Mg-MOF-74 shed some light on the interpretation of thermodynamic data from flue gas in this material. The force field describes accurately the chemistry of the open metal sites, and is transferable to other structures. This approach may serve in molecular simulations in general and in the study of fluid–solid interactions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Interaction energy comparison of force fields with decomposed MP2 and UFF.
Figure 2: Interaction energy comparison of force field with periodic DFT.
Figure 3: Comparison of the experimental and simulated isosteric heats of adsorptions as a function of loading.
Figure 4: Comparison of simulated and experimental adsorption isotherms and Henry coefficients.
Figure 5: Enhancement of the adsorption of CO2 as a function of loading.
Figure 6: Adsorption isotherms of CO2 in additional frameworks.

References

  1. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  2. Metz, B., Davidson, O., deConinck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2005).

    Google Scholar 

  3. Ramezan, M., Skone, T. J., ya Nsakala, N. & Liljedahl, G. N. Carbon Dioxide Capture from Existing Coal-Fired Power Plants. Report No. DOE/NETL-401/110907 (National Energy Technology Laboratory, US Department of Energy, 2007).

    Google Scholar 

  4. D'Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    CAS  Article  Google Scholar 

  5. Lin, L-C. et al. In silico screening of carbon-capture materials. Nat. Mater. 11, 633–641 (2012).

    CAS  Article  Google Scholar 

  6. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  Article  Google Scholar 

  7. Valenzano, L., Civalleri, B., Sillar, K. & Sauer, J. Heats of adsorption of CO and CO2 in metal–organic frameworks: quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn). J. Phys. Chem. C 115, 21777–21784 (2011).

    CAS  Article  Google Scholar 

  8. Chui, S. S-Y., Lo, S. M-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material. Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  9. Millward, A. R. & Yaghi, O. M. Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    CAS  Article  Google Scholar 

  10. Dietzel, P. D. C., Besikiotis, V. & Blom, R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009).

    CAS  Article  Google Scholar 

  11. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).

    CAS  Article  Google Scholar 

  12. Grajciar, L. S., Bludský, O. & Nachtigall, P. Water adsorption on coordinatively unsaturated sites in CuBTC MOF. J. Phys. Chem. Lett. 1, 3354–3359 (2010).

    CAS  Article  Google Scholar 

  13. Getman, R. B., Bae, Y-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 112, 703–723 (2012).

    CAS  Article  Google Scholar 

  14. Wu, H., Zhou, W. & Yildirim, T. High-capacity methane storage in metal–organic frameworks M(2)(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009).

    CAS  Article  Google Scholar 

  15. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    CAS  Article  Google Scholar 

  16. Yazaydin, A. O. et al. Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198 (2009).

    CAS  Article  Google Scholar 

  17. Liu, B. & Smit, B. Comparative molecular simulation study of CO2/N2 and CH2/N2 separation in zeolites and metal–organic frameworks. Langmuir 25, 5918–5926 (2009).

    CAS  Article  Google Scholar 

  18. Krishna, R. & van Baten, J. M. In silico screening of metal–organic frameworks in separation applications. Phys. Chem. Chem. Phys. 13, 10593–10616 (2011).

    CAS  Article  Google Scholar 

  19. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    CAS  Article  Google Scholar 

  20. Hagberg, D., Karlstrom, G., Roos, B. O. & Gagliardi, L. The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. J. Am. Chem. Soc. 127, 14250–14256 (2005).

    CAS  Article  Google Scholar 

  21. Engkvist, O., Astrand, P. O. & Karlstrom, G. Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem. Rev. 100, 4087–4108 (2000).

    CAS  Article  Google Scholar 

  22. Mayo, S. L., Olafson, B. D. & Goddard, W. A. Dreiding – a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Article  Google Scholar 

  23. Krishna, R. & van Baten, J. M. Investigating the potential of MgMOF-74 membranes for CO2 capture. J. Membr. Sci. 377, 249–260 (2011).

    CAS  Article  Google Scholar 

  24. Gagliardi, L., Lindh, R. & Karlstrom, G. Local properties of quantum chemical systems: the LoProp approach. J. Chem. Phys. 121, 4494–4500 (2004).

    CAS  Article  Google Scholar 

  25. Simmons, J. M., Wu, H., Zhou, W. & Yildirim, T. Carbon capture in metal–organic frameworks—a comparative study. Energy Environ. Sci. 4, 2177–2185 (2011).

    CAS  Article  Google Scholar 

  26. Vuong, T. & Monson, P. A. Monte Carlo simulation studies of heats of adsorption in heterogeneous solids. Langmuir 12, 5425–5432 (1996).

    CAS  Article  Google Scholar 

  27. Liu, J. et al. Stability effects on CO2 adsorption for the DOBDC series of metal–organic frameworks. Langmuir 27, 11451–11456 (2011).

    CAS  Article  Google Scholar 

  28. Bao, Z. B., Yu, L. A., Ren, Q. L., Lu, X. Y. & Deng, S. G. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549–556 (2011).

    CAS  Article  Google Scholar 

  29. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870 (2008).

    CAS  Article  Google Scholar 

  30. Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011).

    CAS  Article  Google Scholar 

  31. Kizzie, A. C., Wong-Foy, A. G. & Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011).

    CAS  Article  Google Scholar 

  32. Sillar, K., Hofmann, A. & Sauer, J. Ab initio study of hydrogen adsorption in MOF-5. J. Am. Chem. Soc. 131, 4143–4150 (2009).

    CAS  Article  Google Scholar 

  33. Walton, K. S. et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal–organic frameworks. J. Am. Chem. Soc. 130, 406–407 (2008).

    CAS  Article  Google Scholar 

  34. Boys, S. F. & Bernardi, F. Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    CAS  Article  Google Scholar 

  35. Karlstrom, G. et al. MOLCAS: a program package for computational chemistry. Comp. Mater. Sci. 28, 222–239 (2003).

    Article  Google Scholar 

  36. Aquilante, F., Pedersen, T. B. & Lindh, R. Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J. Chem. Phys. 126, 194106 (2007).

    Article  Google Scholar 

  37. Aquilante, F., Malmqvist, P. A., Pedersen, T. B., Ghosh, A. & Roos, B. O. Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of Co-III(diiminato)(NPh). J. Chem. Theory Comput. 4, 694–702 (2008).

    CAS  Article  Google Scholar 

  38. Aquilante, F. et al. Accurate ab initio density fitting for multiconfigurational self-consistent field methods. J. Chem. Phys. 129, 024113 (2008).

    Article  Google Scholar 

  39. Hess, B. A. Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-field projection operators. Phys. Rev. A 33, 3742–3748 (1986).

    CAS  Article  Google Scholar 

  40. Roos, B. O., Lindh, R., Malmqvist, P. A., Veryazov, V. & Widmark, P. O. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 108, 2851–2858 (2004).

    CAS  Article  Google Scholar 

  41. Roos, B. O., Lindh, R., Malmqvist, P. A., Veryazov, V. & Widmark, P. O. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005).

    CAS  Article  Google Scholar 

  42. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  43. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  44. Lee, K., Murray, E. D., Kong, L. Z., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  Google Scholar 

  45. Poloni, R., Smit, B. & Neaton, J. B. CO2 capture by metal–organic frameworks with van der Waals density functionals. J. Phys. Chem. A 116, 4957–4964 (2012).

    CAS  Article  Google Scholar 

  46. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    CAS  Article  Google Scholar 

  47. Román-Peréz, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  48. Holt, A., Bostrom, J., Karlstrom, G. & Lindh, R. A NEMO potential that includes the dipole–quadrupole and quadrupole–quadrupole polarizability. J. Comput. Chem. 31, 1583–1591 (2010).

    CAS  PubMed  Google Scholar 

  49. Frenkel, D. & Smit, B. Understanding Molecular Simulations: from Algorithms to Applications 2nd edn (Academic Press, 2002).

    Google Scholar 

  50. Potoff, J. J. & Siepmann, J. I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the US Department of Energy under contracts DE-SC0001015, DE-FG02-11ER16283 (A.L.D and L.G.), DE-AC02-05CH11231, Advanced Research Projects Agency – Energy, and the Deutsche Forschungsgemeinschaft (DFG, Priority Program SPP 1570). A detailed description is given in the Supplementary Information. We thank G. Karlström, Lund University, and Roland Lindh, Uppsala University, for useful discussion.

Author information

Authors and Affiliations

Authors

Contributions

A.L.D. performed the cluster calculations at the MP2 level and the NEMO decomposition of the interaction energies, R.P. performed the periodic DFT calculations, L-C.L., J.A.S. and J.K. performed the molecular simulations, S.N.M. provided some of the optimized MOF structures, A.L.D. and L-C.L. optimized the force field and B.S. and L.G. conceived the research. A.L.D., L-C.L., B.S. and L.G. co-wrote the manuscript and all the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Berend Smit or Laura Gagliardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2486 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dzubak, A., Lin, LC., Kim, J. et al. Ab initio carbon capture in open-site metal–organic frameworks. Nature Chem 4, 810–816 (2012). https://doi.org/10.1038/nchem.1432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1432

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing