Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Catalyst–support interactions

Electronic perturbations

Oxide materials typically used as supports for the active metal nanoparticles of heterogeneous catalysts are known to influence catalytic activity through strong metal–support interactions. Researchers have now revealed electronic interactions between platinum and ceria that go well beyond known effects and lead to excellent catalytic activity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated reaction path for the dissociation of adsorbed H2O on a ceria-supported Pt cluster.

References

  1. Bruix, A. et al. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    Article  CAS  Google Scholar 

  2. Goodman, D. W. Chem. Rev. 95, 523–536 (1995).

    Article  CAS  Google Scholar 

  3. Haruta, M. CATTECH 6, 102–115 (2002).

    Article  CAS  Google Scholar 

  4. Valden, M., Lai, X. & Goodman, D. W. Science 281, 1647–1650 (1998).

    Article  CAS  Google Scholar 

  5. Rodriguez, J. A., Liu, P., Hrbek, J., Evans, J. & Perez, M. Angew. Chem. Int. Ed. 46, 1329–1332 (2007).

    Article  CAS  Google Scholar 

  6. McClure, S. M., Lundwall, M. J. & Goodman, D. W. Proc. Natl Acad. Sci. USA 108, 931–936 (2011).

    Article  CAS  Google Scholar 

  7. Kleis, J. et al. Catal. Lett. 141, 1067–1071 (2011).

    Article  CAS  Google Scholar 

  8. Charreteur, F., Jaouen, F., Ruggeri, S. & Dodelet, J. P. Electrochim. Acta 53, 2925–2938 (2008).

    Article  CAS  Google Scholar 

  9. Tauster, S. J. Acc. Chem. Res. 20, 389–394 (1987).

    Article  CAS  Google Scholar 

  10. Belton, D. N., Sun, Y. M. & White, J. M. J. Phys. Chem. 88, 5172–5176 (1984).

    Article  CAS  Google Scholar 

  11. Mavrikakis, M., Hammer, B. & Norskov, J. K. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  12. Farmer, J. A. & Campbell, C. T. Science 329, 933–936 (2010).

    Article  CAS  Google Scholar 

  13. Min, B. K., Wallace, W. T. & Goodman, D. W. J. Phys. Chem. B 108, 14609–14615 (2004).

    Article  CAS  Google Scholar 

  14. Dai, Y. Q. et al. Angew. Chem. Int. Ed. 49, 8165–8168 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Department of Energy, Office of Basic Energy Sciences, for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, C. Electronic perturbations. Nature Chem 4, 597–598 (2012). https://doi.org/10.1038/nchem.1412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing