Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism

  • An Erratum to this article was published on 24 September 2012


Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: States of a chemical system.
Figure 2: Crystal structure of 3·(ClO4)5·Cl.
Figure 3: Chemical network showing the effects of the sequential addition of anions.

Change history

  • 14 August 2012

    In the version of this Article previously published, in the final paragraph of the Methods section the accession number CCDC 878882 should have read CCDC 879992. This has been corrected in the online Article.


  1. 1

    Serreli, V., Lee, C. F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Bhosale, S. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Yoon, H. J., Kuwabara, J., Kim, J-H. & Mirkin, C. A. Allosteric supramolecular triple-layer catalysts. Science 330, 66–69 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Rebek, J. Jr & Wattley, R. V. Allosteric effects. Remote control of ion transport selectivity. J. Am. Chem. Soc. 102, 4853–4854 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Willans, C. E., Anderson, K. M., Potts, L. C. & Steed, J. W. Allosteric effects in a tetrapodal imidazolium-derived calix[4]arene anion receptor. Org. Biomol. Chem. 7, 2756–2760 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Lehn, J-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc. Chem. Res. 40, 103–112 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Sauvage, J-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Gianneschi, N. C., Masar, M. S. & Mirkin, C. A. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc. Chem. Res. 38, 825–837 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Whittell, G. R., Hager, M. D., Schubert, U. S. & Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nature Mater. 10, 176–188 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Sun, Q-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Ward, M. D. Polynuclear coordination cages. Chem. Commun. 4487–4499 (2009).

  16. 16

    Li, F., Clegg, J. K., Lindoy, L. F., Macquart, R. B. & Meehan, G. V. Metallosupramolecular self-assembly of a universal 3-ravel. Nature Commun. 2, 205, (2011).

    Article  Google Scholar 

  17. 17

    Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 899–952 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Osowska, K. & Miljanić, O. Š. Self-sorting of dynamic imine libraries during distillation. Angew. Chem. Int. Ed. 50, 8345–8349 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Ayme, J-F. et al. A synthetic molecular pentafoil knot. Nature Chem. 4, 15–20 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Forgan, R. S., Sauvage, J-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Chichak, K. S. et al. Molecular borromean rings. Science 304, 1308–1312 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Meng, W. et al. A self-assembled M8L6 cubic cage that selectively encapsulates large aromatic guests. Angew. Chem. Int. Ed. 50, 3479–3483 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Domer, J., Slootweg, J. C., Hupka, F., Lammertsma, K. & Hahn, F. E. Subcomponent assembly and transmetalation of dinuclear helicates. Angew. Chem. Int. Ed. 49, 6430–6433 (2010).

    Article  Google Scholar 

  28. 28

    Park, J. S. et al. Ion-mediated electron transfer in a supramolecular donor–acceptor ensemble. Science 329, 1324–1327 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Meudtner, R. M. & Hecht, S. Helicity inversion in responsive foldamers induced by achiral halide ion guests. Angew. Chem. Int. Ed. 47, 4926–4930 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Turega, S. et al. Selective guest recognition by a self-assembled paramagnetic cage complex. Chem. Commun. 48, 2752–2754 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Otto, S., Furlan, R. L. E. & Sanders, J. K. M. Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides. Science 297, 590–593 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Hristova, Y. R., Smulders, M. M. J., Clegg, J. K., Breiner, B. & Nitschke, J. R. Selective anion binding by a ‘Chameleon’ capsule with a dynamically reconfigurable exterior. Chem. Sci. 2, 638–641 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Hasenknopf, B. et al. Self-assembly of tetra- and hexanuclear circular helicates. J. Am. Chem. Soc. 119, 10956–10962 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Giles, I. D., Chifotides, H. T., Shatruk, M. & Dunbar, K. R. Anion-templated self-assembly of highly stable Fe(II) pentagonal metallacycles with short anion-π contacts. Chem. Commun. 47, 12604–12606 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Glasson, C. R. K. et al. Unprecedented encapsulation of a [FeIIICl4] anion in a cationic [FeII4L6]8+ tetrahedral cage derived from 5,5′″-dimethyl-2,2′:5′,5″:2″,2′′-quaterpyridine. Chem. Sci. 2, 540–543 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Clegg, J. K., Li, F., Jolliffe, K. A., Meehan, G. V. & Lindoy, L. F. An expanded neutral M4L6 cage that encapsulates four tetrahydrofuran molecules. Chem. Commun. 47, 6042–6044 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Paul, R. L. et al. Structures and anion-binding properties of M4L6 tetrahedral cage complexes with large central cavities. Dalton Trans. 3453–3458 (2004).

  38. 38

    Hall, B. R. et al. Structures, host–guest chemistry and mechanism of stepwise self-assembly of M4L6 tetrahedral cage complexes. Dalton Trans. 40, 12132–12145 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Mingos, P. M. D. & Rohl, A. L. Size and shape characteristics of inorganic molecular ions and their relevance to crystallization problems. Inorg. Chem. 30, 3769–3771 (1991).

    CAS  Article  Google Scholar 

  40. 40

    Mecozzi, S. & Rebek, J. Jr The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Stephenson, A. & Ward, M. D. Molecular squares, cubes and chains from self-assembly of bis-bidentate bridging ligands with transition metal dications. Dalton Trans. 40, 10360–10369 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Howson, S. E. et al. Origins of stereoselectivity in optically pure phenylethaniminopyridine tris-chelates M(NN′)3n+ (M=Mn, Fe, Co, Ni and Zn). Dalton Trans. 40, 10416–10433 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Alexander, R., Ko, E. C. F., Mac, Y. C. & Parker, A. J. Solvation of ions. XI. Solubility products and instability constants in water, methanol, formamide, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, and hexamethylphosphorotriamide. J. Am. Chem. Soc. 89, 3703–3712 (1967).

    CAS  Article  Google Scholar 

  44. 44

    Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 47, 2649–2652 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Camiolo, S., Gale, P. A., Hursthouse, M. B. & Light, M. E. Nitrophenyl derivatives of pyrrole 2,5-diamides: structural behaviour, anion binding and colour change signalled deprotonation. Org. Biomol. Chem. 1, 741–744 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Matile, S., Som, A. & Sordé, N. Recent synthetic ion channels and pores. Tetrahedron 60, 6405–6435 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Meng, W., Clegg, J. K. & Nitschke, J. R. Transformative binding and release of gold guests from a self-assembled Cu8L4 tube. Angew. Chem. Int. Ed. 51, 1881–1884 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Haynes, C. J. E. & Gale, P. A. Transmembrane anion transport by synthetic systems. Chem. Commun. 47 (2011).

Download references


This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), the Netherlands Organization for Scientific Research (M.M.J.S.) and the Marie Curie International Incoming Fellowship Scheme of the Seventh European Union Framework Program (J.K.C.). We thank the EPSRC Mass Spectrometry Service at Swansea for MALDI/time-of-flight experiments, D. Howe for help in running the NMR experiments and C. Sporikou for the synthesis of 6,6′-diformyl-3,3′-bipyridine. The authors thank Diamond Light Source (UK) for synchrotron beam time on I19 (MT7114).

Author information




Synthetic and spectroscopic work was carried out by I.A.R. Experiments were conceived by I.A.R., J.R.N., M.M.J.S., Y.R.H. and J.K.C. X-ray data were collected, solved and refined by J.K.C. Mass spectrometry was performed by B.B. and I.A.R. Data analysis was performed by I.A.R., M.M.J.S, J.D.T. and J.R.N. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3923 kb)

Supplementary information

Crystallographic data for CoL3 with perchlorate. (CIF 38 kb)

Supplementary information

Crystallographic data for cage 3 with perchlorate. (CIF 96 kb)

Supplementary information

Crystallographic data for cage 3 with hexafluorophosphate - laboratory source. (CIF 204 kb)

Supplementary information

Crystallographic data for cage 3 with hexafluorophosphate -synchrotron source. (CIF 211 kb)

Supplementary information

Crystallographic data for tetrahedron 2. (CIF 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riddell, I., Smulders, M., Clegg, J. et al. Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism. Nature Chem 4, 751–756 (2012).

Download citation

Further reading