Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The progression of chiral anions from concepts to applications in asymmetric catalysis

Abstract

Despite the tremendous advances of the past four decades, chemists are far from being able to use chiral catalysts to control the stereoselectivity of any desired reaction. New concepts for the construction and mode of operation of chiral catalysts have the potential to open up previously inaccessible reaction space. The recognition and categorization of distinct approaches seems to play a role in triggering rapid exploration of new territory. This Review both reflects on the origins as well as details a selection of the latest examples of an area that has advanced considerably within the past five years or so: the use of chiral anions in asymmetric catalysis. Defining reactions as involving chiral anions is a difficult task owing to uncertainties over the exact catalytic mechanisms. Nevertheless, we attempt to provide an overview of the breadth of reactions that could reasonably fall under this umbrella.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Representative asymmetric activation modes of a carbonyl group or imine.
Figure 2: Early examples of chiral anions and an example of chiral cations in synthesis.
Figure 3: Early efforts towards asymmetric catalysis using chiral anions.
Figure 4: Some seminal applications of 3,3′-disubstituted BINOL-derived phosphoric acids.
Figure 5: Examples of asymmetric reactions using chiral counterions derived from Brønsted acid catalysts.
Figure 6: Examples of asymmetric metal catalysis with chiral anionic counterions.
Figure 7: Further examples of asymmetric metal catalysis with chiral counterions.
Figure 8: Examples of asymmetric catalysis by chiral anion binding from hydrogen-bonding catalysts.
Figure 9: Examples of the use of chiral anions in asymmetric phase-transfer catalysis.

References

  1. 1

    Walsh, P. J. & Kozlowski, M. C. Fundamentals of Asymmetric Catalysis (University Science Books, 2008).

    Google Scholar 

  2. 2

    Yamamoto, H. Lewis Acids in Organic Synthesis (Wiley-VCH, 2000).

    Book  Google Scholar 

  3. 3

    Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Jakab, G., Tancon, C., Zhang, Z., Lippert, K. M. & Schreiner, P. R. (Thio)urea organocatalyst equilibrium acidities in DMSO. Org. Lett. 14, 1724–1727 (2012).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Vachal, P. & Jacobsen, E. N. Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. J. Am. Chem. Soc. 124, 10012–10014 (2002).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Huang, Y., Unni, A. K., Thadani, A. N. & Rawal, V. H. Hydrogen bonding: Single enantiomers from a chiral-alcohol catalyst. Nature 424, 146–146 (2003).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Christ, P. et al. pKa values of chiral Brønsted acid catalysts: phosphoric acids/amides, sulfonyl/sulfuryl imides, and perfluorinated TADDOLs (TEFDDOLs). Chem. Eur. J. 17, 8524–8528 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Terada, M. Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis 1929–1982 (2010).

  11. 11

    Simón, L. & Goodman, J. M. A model for the enantioselectivity of imine reactions catalyzed by BINOL-phosphoric acid catalysts. J. Org. Chem. 76, 1775–1788 (2011).

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Hatano, M., Maki, T., Moriyama, K., Arinobe, M. & Ishihara, K. Pyridinium 1,1′-binaphthyl-2,2′ disulfonates as highly effective chiral brønsted acid−base combined salt catalysts for enantioselective Mannich-type reaction. J. Am. Chem. Soc. 130, 16858–16860 (2008).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Simón, L. & Goodman, J. M. Theoretical study of the mechanism of Hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. J. Am. Chem. Soc. 130, 8741–8747 (2008).

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Fleischmann, M., Drettwan, D., Sugiono, E., Rueping, M. & Gschwind, R. M. Brønsted acid catalysis: hydrogen bonding versus ion pairing in imine activation. Angew. Chem. Int. Ed. 50, 6364–6369 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Lacour, J. & Hebbe-Viton, V. Recent developments in chiral anion mediated asymmetric chemistry. Chem. Soc. Rev. 32, 373–382 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Lacour, J. & Moraleda, D. Chiral anion-mediated asymmetric ion pairing chemistry. Chem. Commun. 7073–7089 (2009).

  17. 17

    Shao, Z. & Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 38, 2745–2755 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Zhong, C. & Shi, X. When organocatalysis meets transition-metal catalysis. Eur. J. Org. Chem. 2010, 2999–3025 (2010).

    Article  CAS  Google Scholar 

  19. 19

    Rueping, M., Koenigs, R. M. & Atodiresei, I. Unifying metal and Brønsted acid catalysis—concepts, mechanisms, and classifications. Chem. Eur. J. 16, 9350–9365 (2010).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Eliel, E. L., Mander, L. N. & Wilen, S. H. Stereochemistry of Organic Compounds (Wiley-Interscience, 1994)

    Google Scholar 

  21. 21

    Jacques, J., Fouquey, C. & Viterbo, R. Enantiomeric cyclic binaphthyl phosphoric acids as resolving agents. Tetrahedron Lett. 12, 4617–4620 (1971).

    Article  Google Scholar 

  22. 22

    Lacour, J., Ginglinger, C., Grivet, C. & Bernardinelli, G. Synthesis and resolution of the configurationally stable tris(tetrachlorobenzenediolato)phosphate(v) ion. Angew. Chem. Int. Ed. 36, 608–610 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Lacour, J., Ginglinger, C. & Favarger, F. Asymmetric recognition of TRISPHAT anion. Unusually high difference in reactivity of the pseudoenantiomers of cinchona alkaloids. Tetrahedron Lett. 39, 4825–4828 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Shevchenko, I. V., Fischer, A., Jones, P. G. & Schmutzler, R. The unusual oxidation of a 1,5,2,4-diazadiphosphorinan-6-one with tetrachloro-ortho-benzoquinone. Chem. Ber. 125, 1325–1332 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Ishihara, K., Miyata, M., Hattori, K., Tada, T. & Yamamoto, H. A New chiral BLA promoter for asymmetric aza Diels–Alder and aldol-type reactions of imines. J. Am. Chem. Soc. 116, 10520–10524 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Maruoka, K. Asymmetric Phase Transfer Catalysis (Wiley-VCH, 2008).

    Book  Google Scholar 

  27. 27

    Ojima, I. Catalytic Asymmetric Synthesis (Wiley-VCH, 2000).

    Book  Google Scholar 

  28. 28

    Maruoka, K. & Ooi, T. Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem. Rev. 103, 3013–3028 (2003).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Lygo, B. & Andrews, B. I. Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: asymmetric alkylation of glycine imines. Acc. Chem. Res. 37, 518–525 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    O'Donnell, M. J. The enantioselective synthesis of alpha-amino acids by phase-transfer catalysis with achiral Schiff base esters. Acc. Chem. Res. 37, 506–517 (2004).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Ooi, T. & Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed. 46, 4222–4266 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Dolling, U. H., Davis, P. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J. Am. Chem. Soc. 106, 446–447 (1984).

    CAS  Article  Google Scholar 

  33. 33

    Hughes, D. L., Dolling, U. H., Ryan, K. M., Schoenewaldt, E. F. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 3. A kinetic and mechanistic study of the enantioselective phase-transfer methylation of 6,7-dichloro-5-methoxy-2-phenyl-1-indanone. J. Org. Chem. 52, 4745–4752 (1987).

    CAS  Article  Google Scholar 

  34. 34

    O'Donnell, M. J., Delgado, F., Hostettler, C. & Schwesinger, R. An efficient homogeneous catalytic enantioselective synthesis of α-amino acid derivatives. Tetrahedron Lett. 39, 8775–8778 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Owen, D. J. & Schuster, G. B. Induced circular dichroism in cyanine borate penetrated ion pairs. J. Am. Chem. Soc. 118, 259–260 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Lacour, J., Jodry, J. J., Ginglinger, C. & Torche-Haldimann, S. Diastereoselective ion pairing of TRISPHAT anions and tris(4,4′-dimethyl-2,2′-bipyridine)iron(II). Angew. Chem. Int. Ed. 37, 2379–2380 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Llewellyn, D. B., Adamson, D. & Arndtsen, B. A. A novel example of chiral counteranion induced enantioselective metal catalysis: the importance of ion-pairing in copper-catalyzed olefin aziridination and cyclopropanation. Org. Lett. 2, 4165–4168 (2000).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Carter, C., Fletcher, S. & Nelson, A. Towards phase-transfer catalysts with a chiral anion: inducing asymmetry in the reactions of cations. Tetrahedron 14, 1995–2004 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Alper, H. & Hamel, N. Asymmetric synthesis of acids by the palladium-catalyzed hydrocarboxylation of olefins in the presence of (R)-(–)- or (S)-(+)-1,1′-binaphthyl-2,2′-diyl hydrogen phosphate. J. Am. Chem. Soc. 112, 2803–2804 (1990).

    CAS  Article  Google Scholar 

  40. 40

    Inanaga, J., Sugimoto, Y. & Hanamoto, T. Achiral and chiral lanthanide(III) salts of superacids as novel Lewis acid catalysts in organic synthesis. New J. Chem. 19, 707–712 (1995).

    CAS  Google Scholar 

  41. 41

    Hanamoto, T., Furuno, H., Sugimoto, Y. & Inanaga, J. Asymmetric hetero Diels–Alder reaction catalyzed by chiral ytterbium(III) phosphate{Yb[(R)-(–)-BNP]3}: remarkable ligand effect on the enantioselectivity. Synlett 1, 79–80 (1997).

    Article  Google Scholar 

  42. 42

    Lacasse, M. C., Poulard, C. & Charette, A. B. Iodomethylzinc phosphates: powerful reagents for the cyclopropanation of alkenes. J. Am. Chem. Soc. 127, 12440–12441 (2005).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Yamamoto, H. & Futatsugi, K. 'Designer acids': combined acid catalysis for asymmetric synthesis. Angew. Chem. Int. Ed. 44, 1924–1942 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Uraguchi, D. & Terada, M. Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 4097–4112 (2008).

  47. 47

    Yang, J. W., Hechavarria Fonseca, M. T., Vignola, N. & List, B. Metal-free, organocatalytic asymmetric transfer hydrogenation of α, β-unsaturated aldehydes. Angew. Chem. Int. Ed. 44, 108–110 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Ouellet, S. G., Tuttle, J. B. & MacMillan, D. W. Enantioselective organocatalytic hydride reduction. J. Am. Chem. Soc. 127, 32–33 (2005).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Mayer, S. & List, B. Asymmetric counteranion-directed catalysis. Angew. Chem. Int. Ed. 45, 4193–4195 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Wang, X. & List, B. Asymmetric counteranion-directed catalysis for the epoxidation of enals. Angew. Chem. Int. Ed. 47, 1119–1122 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Hamilton, G. L., Kanai, T. & Toste, F. D. Chiral anion-mediated asymmetric ring opening of meso-aziridinium and episulfonium ions. J. Am. Chem. Soc. 130, 14984–14986 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Hennecke, U., Müller, C. H. & Fröhlich, R. Enantioselective haloetherification by asymmetric opening of meso-halonium ions. Org. Lett. 13, 860–863 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    García-García, P., Lay, F., García-García, P., Rabalakos, C. & List, B. A powerful chiral counteranion motif for asymmetric catalysis. Angew. Chem. Int. Ed. 48, 4363–4366 (2009).

    Article  CAS  Google Scholar 

  54. 54

    Rueping, M., Uria, U., Lin, M-Y. & Atodiresei, I. Chiral organic contact ion pairs in metal-free catalytic asymmetric allylic substitutions. J. Am. Chem. Soc. 133, 3732–3735 (2011).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Aranzamendi, E., Sotomayor, N. & Lete, E. Brønsted acid catalyzed enantioselective α-amidoalkylation in the synthesis of isoindoloisoquinolines. J. Org. Chem. 77, 2986–2991 (2012).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Gómez-SanJuan, A., Sotomayor, N. & Lete, E. Enantioselective intramolecular α-amidoalkylation reaction in the synthesis of pyrrolo[2,1-a]isoquinolines. Tetrahedron Lett. 53, 2157–2159 (2012).

    Article  CAS  Google Scholar 

  57. 57

    Guo, Q-X. et al. Highly enantioselective alkylation reaction of enamides by Brønsted-acid catalysis. Org. Lett. 11, 4620–4623 (2009).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Terada, M., Tanaka, H. & Sorimachi, K. Enantioselective direct Aldol-type reaction of azlactone via protonation of vinyl ethers by a chiral Brønsted acid catalyst. J. Am. Chem. Soc. 131, 3430–3431 (2009).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Zhang, Q-W. et al. Brønsted acid catalyzed enantioselective semipinacol rearrangement for the synthesis of chiral spiroethers. Angew. Chem. Int. Ed. 48, 8572–8574 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Čoricć, I., Vellalath, S. & List, B. Catalytic asymmetric transacetalization. J. Am. Chem. Soc. 132, 8536–8537 (2010).

    Article  CAS  Google Scholar 

  61. 61

    Čoricć, I. & List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483, 315–319 (2012).

    Article  CAS  Google Scholar 

  62. 62

    Komanduri, V. & Krische, M. J. Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones via rhodium-catalyzed asymmetric hydrogenation: mechanistic insight into the role of Brønsted acid additives. J. Am. Chem. Soc. 128, 16448–16449 (2006).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Shapiro, N. D. & Toste, F. D. A reactivity-driven approach to the discovery and development of gold-catalyzed organic reactions. Synlett 675–691 (2010).

  64. 64

    LaLonde, R. L., Sherry, B. D., Kang, E. J. & Toste, F. D. Gold(I)-catalyzed enantioselective intramolecular hydroamination of allenes. J. Am. Chem. Soc. 129, 2452–2453 (2007).

    CAS  Article  Google Scholar 

  65. 65

    Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    CAS  Article  Google Scholar 

  66. 66

    LaLonde, R. L., Wang, Z. J., Mba, M., Lackner, A. D. & Toste, F. D. Gold(I)-catalyzed enantioselective synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines. Angew. Chem. Int. Ed. 49, 598–601 (2010).

    CAS  Article  Google Scholar 

  67. 67

    Aikawa, K., Kojima, M. & Mikami, K. Synergistic effect: hydroalkoxylation of allenes through combination of enantiopure BIPHEP–gold complexes and chiral anions. Adv. Synth. Cat. 352, 3131–3135 (2010).

    CAS  Article  Google Scholar 

  68. 68

    Shapiro, N. D., Rauniyar, V., Hamilton, G. L., Wu, J. & Toste, F. D. Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature 470, 245–249 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Brønsted acid-catalyzed direct alpha-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Rueping, M., Antonchick, A. P. & Brinkmann, C. Dual catalysis: a combined enantioselective Brønsted acid and metal-catalyzed reaction—metal catalysis with chiral counterions. Angew. Chem. Int. Ed. 46, 6903–6906 (2007).

    CAS  Article  Google Scholar 

  71. 71

    Campbell, M. J. & Toste, F. D. Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(I) catalyst. Chem. Sci. 2, 1369–1378 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Liao, S. & List, B. Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese(III) salen phosphate complexes. Angew. Chem. Int. Ed. 49, 628–631 (2010).

    CAS  Article  Google Scholar 

  73. 73

    Jiang, G., Halder, R., Fang, Y. & List, B. A highly enantioselective Overman rearrangement through asymmetric counteranion-directed palladium catalysis. Angew. Chem. Int. Ed. 50, 9752–9755 (2011).

    CAS  Article  Google Scholar 

  74. 74

    Jiang, G. & List, B. Palladium/Brønsted acid-catalyzed α-allylation of aldehydes with allylic alcohols. Adv. Synth. Cat. 353, 1667–1670 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Jiang, G. & List, B. Direct asymmetric α-allylation of aldehydes with simple allylic alcohols enabled by the concerted action of three different catalysts. Angew. Chem. Int. Ed. 50, 9471–9474 (2011).

    CAS  Article  Google Scholar 

  76. 76

    Jiang, G. & List, B. Enantioselective hydrovinylation via asymmetric counteranion-directed ruthenium catalysis. Chem. Commun. 47, 10022–10024 (2011).

    CAS  Article  Google Scholar 

  77. 77

    Li, C., Wang, C., Villa-Marcos, B. & Xiao, J. Chiral counteranion-aided asymmetric hydrogenation of acyclic imines. J. Am. Chem. Soc. 130, 14450–14451 (2008).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Li, C., Villa-Marcos, B. & Xiao, J. Metal−Brønsted acid cooperative catalysis for asymmetric reductive amination. J. Am. Chem. Soc. 131, 6967–6969 (2009).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Rueping, M. & Koenigs, R. M. Bronsted acid differentiated metal catalysis by kinetic discrimination. Chem. Commun. 47, 304–306 (2011).

    CAS  Article  Google Scholar 

  80. 80

    Chai, Z. & Rainey, T. J. Pd(II)/Brønsted acid catalyzed enantioselective allylic C–H activation for the synthesis of spirocyclic rings. J. Am. Chem. Soc. 134, 3615–3618 (2012).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Zhao, B., Du, H. & Shi, Y. Cu(I)-catalyzed diamination of conjugated olefins with tunable anionic counterions. a possible approach to asymmetric diamination. J. Org. Chem. 74, 8392–8395 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Yazaki, R., Kumagai, N. & Shibasaki, M. Direct catalytic asymmetric conjugate addition of terminal alkynes to α, β-unsaturated thioamides. J. Am. Chem. Soc. 132, 10275–10277 (2010).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Rauniyar, V., Wang, Z. J., Burks, H. E. & Toste, F. D. Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction. J. Am. Chem. Soc. 133, 8486–8489 (2011).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Barbazanges, M. et al. Enantioselective IrI-catalyzed carbocyclization of 1,6-enynes by the chiral counterion strategy. Chem. Eur. J. 17, 13789–13794 (2011).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Zbieg, J. R., Yamaguchi, E., McInturff, E. L. & Krische, M. J. Enantioselective C–H crotylation of primary alcohols via hydrohydroxyalkylation of butadiene. Science 336, 324–327 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Ohmatsu, K., Ito, M., Kunieda, T. & Ooi, T. Ion-paired chiral ligands for asymmetric palladium catalysis. Nature Chem. 4, 473–477 (2012).

    CAS  Article  Google Scholar 

  87. 87

    Belokon, Y. N. et al. Potassium and silver chiral cobaltate(III) complexes as precatalysts for asymmetric C–C bond formation. Tetrahedron 19, 822–831 (2008).

    CAS  Article  Google Scholar 

  88. 88

    Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis: What can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Kotke, M. & Schreiner, P. R. Acid-free, organocatalytic acetalization. Tetrahedron 62, 434–439 (2006).

    CAS  Article  Google Scholar 

  90. 90

    Kotke, M. & Schreiner, P. R. Generally applicable organocatalytic tetrahydropyranylation of hydroxy functionalities with very low catalyst loading. Synthesis 5, 779–790 (2007).

    Google Scholar 

  91. 91

    Taylor, M. S. & Jacobsen, E. N. Highly enantioselective catalytic acyl-Pictet–Spengler reactions. J. Am. Chem. Soc. 126, 10558–10559 (2004).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Taylor, M. S., Tokunaga, N. & Jacobsen, E. N. Enantioselective thiourea-catalyzed acyl-Mannich reactions of isoquinolines. Angew. Chem. Int. Ed. 44, 6700–6704 (2005).

    CAS  Article  Google Scholar 

  93. 93

    Raheem, I. T., Thiara, P. S., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet–Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Raheem, I. T., Thiara, P. S. & Jacobsen, E. N. Regio- and enantioselective catalytic cyclization of pyrroles onto N-acyliminium ions. Org. Lett. 10, 1577–1580 (2008).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Knowles, R. R., Lin, S. & Jacobsen, E. N. Enantioselective thiourea-catalyzed cationic polycyclizations. J. Am. Chem. Soc. 132, 5030–5032 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Brown, A. R., Kuo, W-H. & Jacobsen, E. N. Enantioselective catalytic alpha-alkylation of aldehydes via an SN1 pathway. J. Am. Chem. Soc. 132, 9286–9288 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Birrell, J. A., Desrosiers, J-N. & Jacobsen, E. N. Enantioselective acylation of silyl ketene acetals through fluoride anion-binding catalysis. J. Am. Chem. Soc. 133, 13872–13875 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99

    Wurz, R. P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis. Chem. Rev. 107, 5570–5595 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    De, C. K., Klauber, E. G. & Seidel, D. Merging nucleophilic and hydrogen bonding catalysis: an anion binding approach to the kinetic resolution of amines. J. Am. Chem. Soc. 131, 17060–17061 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Klauber, E. G., De, C. K., Shah, T. K. & Seidel, D. Merging nucleophilic and hydrogen bonding catalysis: an anion binding approach to the kinetic resolution of propargylic amines. J. Am. Chem. Soc. 132, 13624–13626 (2010).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    De, C. K. & Seidel, D. Catalytic enantioselective desymmetrization of meso-diamines: a dual small-molecule catalysis approach. J. Am. Chem. Soc. 133, 14538–14541 (2011).

    CAS  Article  Google Scholar 

  103. 103

    De, C. K., Mittal, N. & Seidel, D. A Dual-catalysis approach to the asymmetric Steglich rearrangement and catalytic enantioselective addition of O-acylated azlactones to isoquinolines. J. Am. Chem. Soc. 133, 16802–16805 (2011).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Rauniyar, V., Lackner, A. D., Hamilton, G. L. & Toste, F. D. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. Science 334, 1681–1684 (2011).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Phipps, R. J., Hiramatsu, K. & Toste, F. D. Asymmetric fluorination of enamides: access to α-fluoroimines using an anionic chiral phase-transfer catalyst. J. Am. Chem. Soc. 134, 8376–8379 (2012).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank the University of California, Berkeley, US Department of Energy under contract no. DE-AC02-05CH11231 and NIHGMS (RO1 GM073932) for financial support. R.J.P. is grateful to the European Commission for a Marie Curie International Outgoing Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Dean Toste.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phipps, R., Hamilton, G. & Toste, F. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nature Chem 4, 603–614 (2012). https://doi.org/10.1038/nchem.1405

Download citation

Further reading

Search

Quick links