Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic asymmetric carbon–carbon bond formation using alkenes as alkylmetal equivalents

Abstract

Catalytic asymmetric conjugate addition reactions with organometallic reagents are powerful reactions in synthetic chemistry. Procedures that use non-stabilized carbanions have been developed extensively, but these suffer from a number of limitations that prevent their use in many situations. Here, we report that alkylmetal species generated in situ from alkenes can be used in highly enantioselective 1,4-addition initiated by a copper catalyst. Using alkenes as starting materials is desirable because they are readily available and have favourable properties when compared to pre-made organometallics. High levels of enantioselectivity are observed at room temperature in a range of solvents, and the reaction tolerates functional groups that are not compatible with comparable methods—a necessary prerequisite for efficient and protecting-group-free strategies for synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing alkenes and the organometallics typically used in catalytic asymmetric addition reactions.

Similar content being viewed by others

References

  1. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis (Pergamon, 1992).

    Google Scholar 

  2. Hayashi, T. & Yamasaki, K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 103, 2829–2844 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Krause, N. & Hoffmann-Röder, A. Recent advances in catalytic enantioselective Michael additions. Synthesis 171–196 (2001).

  4. Thaler, T. & Knochel, P. Copper-catalyzed asymmetric Michael addition of magnesium, zinc, and aluminum organometallic reagents: efficient synthesis of chiral molecules. Angew. Chem. Int. Ed. 48, 645–648 (2009).

    Article  CAS  Google Scholar 

  5. Jerphagnon, T., Pizzuti, M. G., Minnaard, A. J. & Feringa, B. L. Recent advances in enantioselective copper-catalyzed 1,4-addition. Chem. Soc. Rev. 38, 1039–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Harutyunyan, S. R., den Hartog, T., Geurts, K., Minnaard, A. J. & Feringa, B. L. Catalytic asymmetric conjugate addition and allylic alkylation with Grignard reagents. Chem. Rev. 108, 2824–2852 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Alexakis, A., Bäckvall, J. E., Krause, N., Pàmies, O. & Diéguez, M. Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem. Rev. 108, 2796–2823 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Feringa, B. L., Badorrey, R., Peña, D., Harutyunyan, S. R. & Minnaard, A. J. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to cyclic enones. Proc. Natl Acad. Sci. USA 101, 5834–5838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin, D. et al. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted enones. Construction of all-carbon quaternary chiral centers. J. Am. Chem. Soc. 128, 8416–8417 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, S. Y., Ji, S. J. & Loh, T. P. Cu(I) Tol-BINAP-catalyzed enantioselective Michael reactions of Grignard reagents and unsaturated esters. J. Am. Chem. Soc. 129, 276–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Robert, T., Velder, J. & Schmalz, H. G. Enantioselective Cu-catalyzed 1,4-addition of Grignard reagents to cyclohexenone using Taddol-derived phosphine-phosphite ligands and 2-methyl-THF as a solvent. Angew. Chem. Int. Ed. 47, 7718–7721 (2008).

    Article  CAS  Google Scholar 

  12. Feringa, B. L., Pineschi, M., Arnold, L. A., Imbos, R. & de Vries, A. H. M. Highly enantioselective catalytic conjugate addition and tandem conjugate addition–aldol reactions of organozinc reagents. Angew. Chem. Int. Ed. 36, 2620–2623 (1997).

    Article  CAS  Google Scholar 

  13. Degrado, S. J., Mizutani, H. & Hoveyda, A. H. Modular peptide-based phosphine ligands in asymmetric catalysis: efficient and enantioselective Cu-catalyzed conjugate additions to five-, six-, and seven-membered cyclic enones. J. Am. Chem. Soc. 123, 755–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Alexakis, A., Benhaim, C., Rosset, S. & Humam, M. Dramatic improvement of the enantiomeric excess in the asymmetric conjugate addition reaction using new experimental conditions. J. Am. Chem. Soc. 124, 5262–5263 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Fraser, P. K. & Woodward, S. Highly enantioselective conjugate addition of AlMe3 to linear aliphatic enones by a designed catalyst. Chem. Eur. J. 9, 776–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. d'Augustin, M., Palais, L. & Alexakis, A. Enantioselective copper-catalyzed conjugate addition to trisubstituted cyclohexenones: construction of stereogenic quaternary centers. Angew. Chem. Int. Ed. 44, 1376–1378 (2005).

    Article  CAS  Google Scholar 

  17. May, T. L., Brown, M. K. & Hoveyda, A. H. Enantioselective synthesis of all-carbon quaternary stereogenic centers by catalytic asymmetric conjugate additions of alkyl and aryl aluminum reagents to five-, six-, and seven-membered-ring beta-substituted cyclic enones. Angew. Chem. Int. Ed. 47, 7358–7362 (2008).

    Article  CAS  Google Scholar 

  18. Perez, M. et al. Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds. Nature Chem. 3, 377–381 (2011).

    Article  CAS  Google Scholar 

  19. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nature Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  20. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen–metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).

    Article  CAS  Google Scholar 

  21. Howell, G. P. Asymmetric and diastereoselective conjugate addition reactions: C–C bond formation at large scale. Org. Process Res. Dev. doi:10.1021/op200381w (2012).

  22. Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

    Google Scholar 

  23. Rieke, R. D. Preparation of organometallic compounds from highly reactive metal powders. Science 246, 1260–1264 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Blümke, T., Chen, Y. H., Peng, Z. & Knochel, P. Preparation of functionalized organoaluminiums by direct insertion of aluminium to unsaturated halides. Nature Chem. 2, 313–318 (2010).

    Article  CAS  Google Scholar 

  25. Shirakawa, E., Ikeda, D., Masui, S., Yoshida, M. & Hayashi, T. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J. Am. Chem. Soc. 134, 272–279 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Bower, J. F. & Krische, M. J. in Handbook of Green Chemistry Vol. 1 (eds Anastas, P. T. & Crabfree, R. H.) Ch. 8 (Wiley-VCH, 2009).

    Google Scholar 

  27. Ohmiya, H., Yoshida, M. & Sawamura, M. Copper-catalyzed conjugate additions of alkylboranes to imidazolyl α,β-unsaturated ketones: formal reductive conjugate addition of terminal alkenes. Org. Lett. 13, 482–485 (2010).

    Article  PubMed  CAS  Google Scholar 

  28. Wipf, P. & Xu, W. J. Preparation of allylic alcohols by alkene transfer from zirconium to zinc. Tetrahedron Lett. 35, 5197–5200 (1994).

    Article  CAS  Google Scholar 

  29. Alexakis, A. et al. Highly enantioselective copper(I)-phosphoramidite-catalysed additions of organoaluminium reagents to enones. Chem. Commun. 2843–2845 (2005).

  30. Akiyama, K., Gao, F. & Hoveyda, A. H. Stereoisomerically pure trisubstituted vinylaluminum reagents and their utility in copper-catalyzed enantioselective synthesis of 1,4-dienes containing Z or E alkenes. Angew. Chem. Int. Ed. 49, 419–423 (2010).

    Article  CAS  Google Scholar 

  31. Miller, K. M., Huang, W. S. & Jamison, T. F. Catalytic asymmetric reductive coupling of alkynes and aldehydes: enantioselective synthesis of allylic alcohols and alpha-hydroxy ketones. J. Am. Chem. Soc. 125, 3442–3443 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bower, J. F., Kim, I. S., Patman, R. L. & Krische, M. J. Catalytic carbonyl addition through transfer hydrogenation: a departure from preformed organometallic reagents. Angew. Chem. Int. Ed. 48, 34–46 (2009).

    Article  CAS  Google Scholar 

  33. Chauvin, Y., Schrock, R. R. & Grubbs, R. H. Nobel lectures. Angew. Chem. Int. Ed. 45, 3740–3765 (2006).

    Article  CAS  Google Scholar 

  34. Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Knowles, W. S., Noyori, R. & Sharpless, K. B. Nobel lectures. Angew. Chem. Int. Ed. 41, 1998–2032 (2002).

    Article  CAS  Google Scholar 

  36. Buchwald, S. L., LaMaire, S. J. & Nielsen, R. B. Schwartz reagent. Org. Synth. 71, 77–82 (1993).

    Article  CAS  Google Scholar 

  37. Schwartz, J. & Labinger, J. A. Hydrozirconation: new transition-metal reagent for organic-synthesis. Angew. Chem. Int. Ed. 15, 333–340 (1976).

    Article  Google Scholar 

  38. Carr, D. B. & Schwartz, J. Preparation of organoaluminum compounds by hydrozirconation-transmetalation. J. Am. Chem. Soc. 101, 3521–3531 (1979).

    Article  CAS  Google Scholar 

  39. Negishi, E. I. Magical power of transition metals: past, present, and future (Nobel lecture). Angew. Chem. Int. Ed. 50, 6738–6764 (2011).

    Article  CAS  Google Scholar 

  40. Lipshutz, B. H. & Ellsworth, E. L. Hydrozirconation-transmetalation—a mild, direct route to higher-order vinylic cuprates from monosubstituted acetylenes. J. Am. Chem. Soc. 112, 7440–7441 (1990).

    Article  CAS  Google Scholar 

  41. Corey, E. J. & Carpino, P. A simplified synthesis of (+)-brefeldin-A. Tetrahedron Lett. 31, 7555–7558 (1990).

    Article  CAS  Google Scholar 

  42. Wipf, P. & Smitrovich, J. H. Transmetalation reactions of alkylzirconocenes—copper-catalyzed conjugate addition to enones. J. Org. Chem. 56, 6494–6496 (1991).

    Article  CAS  Google Scholar 

  43. Venanzi, L. M., Lehmann, R., Keil, R. & Lipshutz, B. H. Copper-catalyzed allylic alkylations of alkylzirconium intermediates. Tetrahedron Lett. 33, 5857–5860 (1992).

    Article  CAS  Google Scholar 

  44. Wipf, P., Xu, W. J., Smitrovich, J. H., Lehmann, R. & Venanzi, L. M. Copper-catalyzed conjugate additions of organozirconocenes. Synthetic and mechanistic studies. Tetrahedron 50, 1935–1954 (1994).

    Article  CAS  Google Scholar 

  45. Wipf, P. & Jahn, H. Synthetic applications of organochlorozirconocene complexes. Tetrahedron 52, 12853–12910 (1996).

    Article  CAS  Google Scholar 

  46. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  47. Brown, M. K., Degrado, S. J. & Hoveyda, A. H. Highly enantioselective Cu-catalyzed conjugate additions of dialkylzinc reagents to unsaturated furanones and pyranones: preparation of air-stable and catalytically active Cu–peptide complexes. Angew. Chem. Int. Ed. 44, 5306–5310 (2005).

    Article  CAS  Google Scholar 

  48. Bilčik, F., Drusan, M., Marák, J. & Šebesta, R. Enantioselective one-pot conjugate addition of Grignard reagents to cyclic enones followed by amidomethylation. J. Org. Chem. 77, 760–765 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Naeemi, Q., Robert, T., Kranz, D. P., Velder, J. & Schmalz, H. G. Chiral phosphine–phosphite ligands in the enantioselective 1,4-addition of Grignard reagents to α,β-unsaturated carbonyl compounds. Tetrahedron Asymm. 22, 887–892 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the EPSRC (EP/H003711/1, a Career Acceleration Fellowship to S.P.F.) and the Oxford University Press John Fell Fund. D. Daniels and B. Odell are thanked for their generous technical assistance with HPLC and NMR, respectively.

Author information

Authors and Affiliations

Authors

Contributions

R.M.M. and P.M.C.R. performed the experiments. All authors contributed to designing the experiments, analysing the data and editing the manuscript. S.P.F. guided the research and wrote the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksymowicz, R., Roth, P. & Fletcher, S. Catalytic asymmetric carbon–carbon bond formation using alkenes as alkylmetal equivalents. Nature Chem 4, 649–654 (2012). https://doi.org/10.1038/nchem.1394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing