Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guided desaturation of unactivated aliphatics

Subjects

Abstract

The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pioneering studies for alkane desaturation.
Figure 2: Design of a directing group for desaturation.
Figure 3: Applications of the guided desaturation reaction on complex substrates.
Figure 4: Mechanistic investigations and proposed reaction mechanism.

Similar content being viewed by others

References

  1. Larock, R. C. Comprehensive Organic Transformation (Wiley, 1999).

    Google Scholar 

  2. Diao, T. & Stahl, S. S. Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones. J. Am. Chem. Soc. 133, 14566–14569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem. Rev. 111, 1761–1779 (2011).

    CAS  PubMed  Google Scholar 

  4. Breslow, R. et al. Remote oxidation of steroids by photolysis of attached benzophenone groups. J. Am. Chem. Soc. 95, 3251–3262 (1973).

    CAS  Google Scholar 

  5. Breslow, R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

    CAS  Google Scholar 

  6. Breslow, R., Snider, B. B. & Corcoran, R. J. Cortisone synthesis using remote oxidation. J. Am. Chem. Soc. 96, 6792–6794 (1974).

    CAS  PubMed  Google Scholar 

  7. Cekovic, Z., Dimitrijevic, L., Djokic, G. & Srnic, T. Remote functionalization by ferrous ion–cupric ion induced decomposition of alkyl hydroperoxides. Tetrahedron 35, 2021–2026 (1979).

    CAS  Google Scholar 

  8. Goettker-Schnetmann, I., White, P. & Brookhart, M. Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes. J. Am. Chem. Soc. 126, 1804–1811 (2004).

    CAS  Google Scholar 

  9. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2009).

    Google Scholar 

  10. Giri, R., Maugel, N., Foxman, B. M. & Yu, J-Q. Dehydrogenation of inert alkyl groups via remote C–H activation: converting a propyl group into a pi-allylic complex. Organometallics 27, 1667–1670 (2008).

    CAS  Google Scholar 

  11. Baudoin, O., Herrbach, A. & Guéritte, F. The palladium-catalyzed C–H activation of benzylic gem-dialkyl groups. Angew. Chem. Int. Ed. 42, 5736–5740 (2003).

    CAS  Google Scholar 

  12. Johnson, J. A., Li, N. & Sames, D. Total synthesis of (–)-rhazinilam: asymmetric C–H bond activation via the use of a chiral auxiliary. J. Am. Chem. Soc. 124, 6900–6903 (2002).

    CAS  PubMed  Google Scholar 

  13. Motti, E. & Catellani, M. Catalytic dehydrogenation of o-alkylated or o-alkoxylated iodoarenes with concomitant hydrogenolysis. Adv. Synth. Catal. 350, 565–569 (2008).

    CAS  Google Scholar 

  14. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009).

    CAS  PubMed  Google Scholar 

  15. Shanklin, J. & Cahoon, E. B. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 611–641 (1998).

    CAS  PubMed  Google Scholar 

  16. Buist, P. H. Fatty acid desaturases: selecting the dehydrogenation channel. Nat. Prod. Rep. 21, 249–262 (2004).

    CAS  PubMed  Google Scholar 

  17. Kim, C., Dong, Y. & Que, L., Jr. Modeling nonheme diiron enzymes: hydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core. J. Am. Chem. Soc. 119, 3635–3636 (1997).

    CAS  Google Scholar 

  18. Bigi, M. A., Reed, S. A. & White, M. C. Diverting non-haem iron catalyzed aliphatic C–H hydroxylations towards desaturations. Nature Chem. 3, 216–222 (2011).

    CAS  Google Scholar 

  19. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).

    CAS  Google Scholar 

  20. Brückl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    PubMed  Google Scholar 

  21. Kryger, R. G., Lorand, J. P., Stevens, N. R. & Herron, N. R. Radicals and scavengers. 7. Diffusion controlled scavenging of phenyl radicals and absolute rate constants of several phenyl radical reactions. J. Am. Chem. Soc. 99, 7589–7600 (1977).

    CAS  Google Scholar 

  22. Han, G., McIntosh, M. C. & Weinreb, S. M. A convenient synthetic method for amide oxidation. Tetrahedron Lett. 35, 5813–5816 (1994).

    CAS  Google Scholar 

  23. Pines, S. H., Purick, R. M., Reamer, R. A. & Gal, G. New aspects of intramolecular hydrogen transfer in some ortho-substituted aryl radicals. J. Org. Chem. 43, 1337–1342 (1978).

    CAS  Google Scholar 

  24. Bridger, R. F. & Russell, G. A. Directive effects in the attack of phenyl radicals on carbon–hydrogen bonds. J. Am. Chem. Soc. 85, 3754–3765 (1963).

    CAS  Google Scholar 

  25. Curran, D. P., Abraham, A. C. & Liu, H. Radical translocation reactions of o-iodoanilides: the use of carbon–hydrogen bonds as precursors of radicals adjacent to carbonyl groups. J. Org. Chem. 56, 4335–4337 (1991).

    CAS  Google Scholar 

  26. Galli, C. Radical reactions of arenediazonium ions: an easy entry into the chemistry of the aryl radical. Chem. Rev. 88, 765–792 (1988).

    CAS  Google Scholar 

  27. Kimball, D. B. & Haley, M. M. Triazenes: a versatile tool in organic synthesis. Angew. Chem. Int. Ed. 41, 3338–3351 (2002).

    CAS  Google Scholar 

  28. Satyamurthy, N. et al. Acid-catalyzed thermal decomposition of 1-aryl-3,3-dialkyltriazenes in the presence of nucleophiles. J. Org. Chem. 55, 4560–4564 (1990).

    CAS  Google Scholar 

  29. Patrick, T. B., Juehne, T., Reeb, E. & Hennessy, D. Zinc(II) promoted conversion of aryltriazenes to aryl iodides and aryl nitriles. Tetrahedron Lett. 42, 3553–3554 (2001).

    CAS  Google Scholar 

  30. Patrick, T. B., Willaredt, R. P. & DeGonia, D. J. Synthesis of biaryls from aryltriazenes. J. Org. Chem. 50, 2232–2235 (1985).

    CAS  Google Scholar 

  31. Gross, M. L., Blank, D. H. & Welch, W. M. The triazene moiety as a protecting group for aromatic amines. J. Org. Chem. 58, 2104–2109 (1993).

    CAS  Google Scholar 

  32. Braese, S. The virtue of the multifunctional triazene linkers in the efficient solid-phase synthesis of heterocycle libraries. Acc. Chem. Res. 37, 805–816 (2004).

    Google Scholar 

  33. Nicolaou, K. C. et al. New synthetic technology for the synthesis of aryl ethers: construction of C-O-D and D-O-E ring model systems of vancomycin. J. Am. Chem. Soc. 119, 3421–3422 (1997).

    CAS  Google Scholar 

  34. Ready, J. M. et al. A mild and efficient synthesis of oxindoles: progress towards the synthesis of welwitindolinone A isonitrile. Angew. Chem. Int. Ed. 43, 1270–1272 (2004).

    CAS  Google Scholar 

  35. Cohen, T., Lewarchik, R. J. & Tarino, J. Z. Role of radical and organocopper intermediates in aromatic diazonium decomposition induced by cuprous ion. J. Am. Chem. Soc. 96, 7753–7760 (1974).

    CAS  Google Scholar 

  36. Kochi, J. K., Bemis, A. & Jenkins, C. L. Mechanism of electron transfer oxidation of alkyl radicals by copper(II) complexes. J. Am. Chem. Soc. 90, 4616–4625 (1968).

    CAS  Google Scholar 

  37. Shibuya, M., Tomizawa, M., Suzuki, I. & Iwabuchi, Y. 2-Azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols. J. Am. Chem. Soc. 128, 8412–8413 (2006).

    CAS  PubMed  Google Scholar 

  38. Debuigne, A., Chan-Seng, D., Li, L., Hamer, G. K. & Georges, M. K. Synthesis and evaluation of sterically hindered 1,1-diadamantyl nitroxide as a low-temperature mediator for the stable free radical polymerization process. Macromolecules 40, 6224–6232 (2007).

    CAS  Google Scholar 

  39. Denenmark, D., Winkler, T., Waldner, A. & De Mesmaeker, A. Competing radical translocation reactions of tertiary N-(2-bromobenzyl)- and N-(8-bromonaphthyl)acetamides. Tetrahedron Lett. 33, 3613–3616 (1992).

    CAS  Google Scholar 

  40. Lewin, A. H., Dinwoodie, A. H. & Cohen, T. 1,5-Hydrogen transfer during diazonium ion decomposition. IV. The copper catalyzed reaction. A case of hydrogen atom or hydride ion transfer in the same system. Tetrahedron 22, 1527–1537 (1966).

    CAS  Google Scholar 

  41. Huang, X. L. & Dannenberg, J. J. Molecular orbital estimation of the activation enthalpies for intramolecular hydrogen transfer as functions of size of the cyclic transition state and carbon–hydrogen–carbon angle. J. Org. Chem. 56, 5421–5424 (1991).

    CAS  Google Scholar 

  42. Cohen, T., Smith, K. W. & Swerdloff, M. D. Isotope effects after the rate-determining step. Role of rotational isomerism in a hydrogen transfer. J. Am. Chem. Soc. 93, 4303–4304 (1971).

    CAS  Google Scholar 

  43. Stang, E. M. & White, M. C. Molecular complexity via C–H activation: a dehydrogenative Diels–Alder reaction. J. Am. Chem. Soc. 133, 14892–14895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckwith, A. L. J. & Meijs, G. F. Reactions of o-alkenyloxyarenediazonium fluoroborates and related species with nitroxides. Chem. Commun. 595–597 (1981).

  45. Zhang, F. & Liu, Y. C. Electron transfer reactions of piperidine aminoxyl radicals. Chin. Sci. Bull. 55, 2760–2783 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D-H. Huang and L. Pasternack for NMR spectroscopic assistance, A. Rheingold and C. Moore for X-ray crystallographic analysis, M. Wasa for assistance with chiral high performance liquid chromatography and L. Leman for assistance with the peptide synthesis. Financial support for this work was provided by the National Institute of General Medical Sciences, National Institute of Health (GM-097444), Spanish Ministry of Education and Science (MEC)–Fulbright Program (postdoctoral fellowship for A.M.), National Science Foundation (predoctoral fellowship for W.R.G.), the Spanish MEC (predoctoral grant for J.O.F.) and Bristol-Myers Squibb (unrestricted research support).

Author information

Authors and Affiliations

Authors

Contributions

A-F.V. and P.S.B. conceived the original concept for the desaturation reaction, A-F.V., A.M., W.R.G. and J.O.F. conducted the experimental work and analysed the results, A-F.V., W.R.G., A.M. and P.S.B. co-wrote the manuscript.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Experimental procedures and characterization data (PDF 1718 kb)

Supplementary information

NMR spectra (PDF 2912 kb)

Supplementary information

Crystallographic data for compound 21 (CIF 16 kb)

Supplementary information

Crystallographic data for compound 33 (CIF 13 kb)

Supplementary information

Crystallographic data for compound 39 (CIF 13 kb)

Supplementary information

Crystallographic data for compound 41 (CIF 17 kb)

Supplementary information

Crystallographic data for compound 43 (CIF 19 kb)

Supplementary information

Crystallographic data for compound 44 (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voica, AF., Mendoza, A., Gutekunst, W. et al. Guided desaturation of unactivated aliphatics. Nature Chem 4, 629–635 (2012). https://doi.org/10.1038/nchem.1385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing