Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes

Abstract

Supramolecular assemblies that interact with light have recently garnered much interest as well-defined nanoscale materials for electronic excitation energy collection and transport. However, to control such complex systems it is essential to understand how their various parts interact and whether these interactions result in coherently shared excited states (excitons) or in diffusive energy transport between them. Here, we address this by studying a model system consisting of two concentric cylindrical dye aggregates in a light-harvesting nanotube. Through selective chemistry we are able to unambiguously determine the supramolecular origin of the observed excitonic transitions. These results required the development of a new theoretical model of the supramolecular structure of the assembly. Our results demonstrate that the two cylinders of the nanotube have distinct spectral responses and are best described as two separate, weakly coupled excitonic systems. Understanding such interactions is critical to the control of energy transfer on a molecular scale, a goal in various applications ranging from artificial photosynthesis to molecular electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-harvesting nanotube consisting of double-walled cylindrical aggregates of amphiphilic cyanine dye molecules.
Figure 2: Chemical oxidation of light-harvesting nanotubes in solution.
Figure 3: Isolated absorption spectrum of the inner-wall cylinder of the light-harvesting nanotubes.
Figure 4: Structural model for a light-harvesting nanotube and theoretical simulations of linear absorption spectra of nanotubes.
Figure 5: Comparison of theoretical simulations with experimental absorption spectra.

Similar content being viewed by others

References

  1. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  2. Cantekin, S., Balkenende, D. W. R., Smulders, M. M. J., Palmans, A. R. A. & Meijer, E. W. The effect of isotopic substitution on the chirality of a self-assembled helix. Nature Chem. 3, 42–46 (2011).

    Article  CAS  Google Scholar 

  3. Hofmann, C. C. et al. The influence of π–π-stacking on the light-harvesting properties of perylene bisimide antennas that are covalently linked to a [60]fullerene. Phys. Chem. Chem. Phys. 12, 14485–14491 (2010).

    Article  CAS  Google Scholar 

  4. van Dijk, L., Bobbert, P. A. & Spano, F. C. Extreme sensitivity of circular dichroism to long-range excitonic couplings in helical supramolecular assemblies. J. Phys. Chem. B 2, 817–825 (2010).

    Article  Google Scholar 

  5. Zhang, X., Rehm, S., Safont-Sempere, M. M. & Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nature Chem. 1, 623–629 (2009).

    Article  CAS  Google Scholar 

  6. Brédas, J. L. & Silbey, R. J. Excitons surf along conjugated polymer chains. Science 16, 348–349 (2009).

    Article  Google Scholar 

  7. Beljonne, D., Curutchet, C., Scholes & Silbey, R. J. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009).

    Article  CAS  Google Scholar 

  8. Röger, C., Miloslavina, Y., Brunner, D., Holzwarth, A. R. & Würthner, F. Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J. Am. Chem. Soc. 130, 5929–5939 (2008).

    Article  Google Scholar 

  9. Kaiser, T. E., Wang, H., Stepanenko, V. & Würthner, F. Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes. Angew. Chem. Int. Ed. 46, 5541–5544 (2007).

    Article  CAS  Google Scholar 

  10. Spano, F. C., Meskers, S. C. J., Hennebicq, E. & Beljonne, D. Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling. J. Am. Chem. Soc. 129, 7044–7054 (2007).

    Article  CAS  Google Scholar 

  11. Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    Article  CAS  Google Scholar 

  12. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  13. Beljonne, D. et al. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics. J. Phys. Chem. B 109, 10594–10604 (2005).

    Article  CAS  Google Scholar 

  14. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  15. Lang, E., Sorokin, A., Drechsler, M., Malyukin, Y. V. & Köhler, J. Optical spectroscopy on individual amphi-PIC J-aggregates. Nano Lett. 5, 2635–2640 (2005).

    Article  CAS  Google Scholar 

  16. Brédas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5003 (2004).

    Article  Google Scholar 

  17. Hofmann, C. et al. Single-molecule study of the electronic couplings in a circular array of molecules: light-harvesting-2 complex from Rhodospirillum molischianum. Phys. Rev. Lett. 90, 1–4 (2003).

    Google Scholar 

  18. De Rossi, U. et al. Control of the J-aggregation phenomenon by variation of the N-alkyl-substituents. Journal für Praktische Chemie/Chemiker-Zeitung 337, 203–208 (1995).

    Article  CAS  Google Scholar 

  19. Pšenčik, J., Ma, Y.-Z., Arellano, J. B., Hala, J. & Gillbro, T. Excitation energy transfer dynamics and excited-state structure in chlorosomes of chlorobium phaeobacteroides. Biophys. J. 84, 1161–1179 (2003).

    Article  Google Scholar 

  20. Oostergetel, G. T. et al. Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435–5439 (2007).

    Article  CAS  Google Scholar 

  21. Balaban, T. S. Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc. Chem. Res. 38, 612–623 (2005).

    Article  CAS  Google Scholar 

  22. von Berlepsch, H., Kirstein, S., Hania, R., Pugzlys A. & Böttcher, C. Modification of the nanoscale structure of the J-aggregate of a sulfonate-substituted amphiphilic carbocyanine dye through incorporation of surface-active additives. J. Phys. Chem. B 111, 1701–1711 (2007).

    Article  CAS  Google Scholar 

  23. Eisele, D. M., Knoester, J., Kirstein, S., Rabe, J. P. & Vanden Bout, D. A. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nature Nanotech. 4, 658–663 (2009).

    Article  CAS  Google Scholar 

  24. Lyon, J. L. et al. Spectroelectrochemical investigation of double-walled tubular J-aggregates of amphiphilic cyanine dyes. J. Phys. Chem. C 112, 1260–1268 (2008).

    Article  CAS  Google Scholar 

  25. Cone, C. W. et al. Singular value decomposition analysis of spectroelectrochemical redox chemistry in supramolecular dye nanotubes. J. Phys. Chem. C 115, 14978–14987 (2011).

    Article  CAS  Google Scholar 

  26. Eisele, D. M. et al. Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. J. Am. Chem. Soc. 132, 2104–2105 (2010).

    Article  CAS  Google Scholar 

  27. Frenkel, J. On the transformation of light into heat in solids II. Phys. Rev. 37, 1276–1294 (1931).

    Article  Google Scholar 

  28. Jelley, E. E. Spectral absorption and fluorescence of dyes in the molecular state. Nature 138, 1009–1010 (1936).

    Article  CAS  Google Scholar 

  29. Scheibe, G. Über die Veränderlichkeit der Absorptionsspektren in Lösung und die Nebenvalenzen als ihre Ursache. Angew. Chem. 50, 212–219 (1937).

    Article  CAS  Google Scholar 

  30. Eisfeld, A. & Briggs, J. S., The J-band of organic dyes: lineshape and coherence length. Chem. Phys. 281, 61–70 (2002).

    Article  CAS  Google Scholar 

  31. Didraga, C., Klugkist, J. A. & Knoester, J. Optical properties of helical cylindrical molecular aggregates: the homogeneous limit. J. Phys. Chem. B 106, 11474–11486 (2002).

    Article  CAS  Google Scholar 

  32. Didraga, C. & Knoester, J. Excitons in tubular molecular aggregates. J. Lumin. 110, 239–245 (2004).

    Article  CAS  Google Scholar 

  33. Augulis, R., Pugžlys, A. & van Loosdrecht, P. H. M. Exciton dynamics in molecular aggregates. Phys. Status Solidi C 3, 3400–3403 (2006).

    Article  CAS  Google Scholar 

  34. Pugžlys, A. et al. Temperature-dependent relaxation of excitons in tubular molecular aggregates: fluorescence decay and Stokes shift. J. Phys. Chem. B 110, 20268–20276 (2006).

    Article  Google Scholar 

  35. Didraga, C. et al. Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. J. Phys. Chem. B 108, 14976–14985 (2004).

    Article  CAS  Google Scholar 

  36. Knoester, J. Modeling the optical properties of excitons in linear and tubular J-aggregates. Int. J. Photoenergy 2006, 1–11 (2006).

    Google Scholar 

  37. Weber, C. M. et al. Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV–vis region. Small 5, 184–189 (2010).

    Article  Google Scholar 

  38. Sperling, J. et al. Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model. J. Phys. Chem. A 114, 8179–8189 (2010).

    Article  CAS  Google Scholar 

  39. Milota, F., Sperling, J., Nemeth, A. & Kauffmann, H. F. Two-dimensional electronic photon echoes of a double band J-aggregate: quantum oscillatory motion versus exciton relaxation: excited state dynamics in light harvesting materials. Chem. Phys. 357, 45–53 (2009).

    Article  CAS  Google Scholar 

  40. Milota, F. et al. Excitonic couplings and interband energy transfer in a double-wall molecular aggregate imaged by coherent two-dimensional electronic spectroscopy. J. Chem. Phys. 131, 054510 (2009).

    Article  CAS  Google Scholar 

  41. Womick, J. M., Miller, S. A. & Moran, A. M. Probing the dynamics of intraband electronic coherences in cylindrical molecular aggregates. J. Phys. Chem. A 113, 6587–6598 (2009).

    Article  CAS  Google Scholar 

  42. Womick, J. M., Miller, S. A. & Moran, A. M. Correlated exciton fluctuations in cylindrical molecular aggregates. J. Phys. Chem. B 113, 6630–6639 (2009).

    Article  CAS  Google Scholar 

  43. Brand, L. & Johnson, M. L. Methods in Enzymology: Numerical Computer Methods Vol. 210 (Academic Press, 1992).

    Google Scholar 

  44. Prokhorenko, V. I., Steensgaard, D. B. & Holzwarth, A. R. Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys. J. 85, 3173–3186 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. von Berlepsch and C. Böttcher for the cryoTEM images, S. Kirstein, C. M. Weber, E. Poblenz and M. Glaz for helpful discussions and laboratory assistance and A. Stradomska and V. A. Malyshev for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (Sfb 448 and Sfb 951), the Integrative Research Institute for the Sciences IRIS Adlershof (Berlin), the National Science Foundation (CHE-1012790), the Alexander von Humboldt-Foundation; D.M.E., S.M.V., R.J.S., M.G.B. were partially supported as part of the DOE Center for Excitonics (an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, DE-SC0001088), an ARO grant (W911NF-09-0480) and a DARPA grant (N66001-10-1-4063).

Author information

Authors and Affiliations

Authors

Contributions

J.P.R., D.A.V.B., J.K. and D.M.E. developed the project. D.M.E. performed experiments and data analysis, put results into perspective, and initiated the collaborations. E.A.B., S.M.V. and C.v.d.K designed the theoretical model with guidance from J.K. E.A.B. analysed the theoretical model and performed the fit to the experimental spectra, supervised by J.K. C.W.C. performed SVD analysis under the guidance of D.A.V.B. R.J.S. and M.G.B. provided helpful discussions and beneficial interpretation of the data analysis. D.M.E., E.A.B., S.M.V., J.K., M.G.B. and D.A.V.B. co-wrote the paper, with input from the other authors.

Corresponding authors

Correspondence to J. Knoester or D. A. Vanden Bout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisele, D., Cone, C., Bloemsma, E. et al. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nature Chem 4, 655–662 (2012). https://doi.org/10.1038/nchem.1380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing