The 'wired' universe of organic chemistry


The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Construction and architecture of the network of organic chemistry.
Figure 2: Examples of synthetic pathways and synthetically challenging molecules identified by network analysis.
Figure 3: The universe of organic chemistry is a scale-free network evolving according to the mechanism of preferential attachment.
Figure 4: Network-based optimization of multiple syntheses and monitoring of restricted substances.


  1. 1

    Tietze, L. F. & Beifuss, U. Sequential transformations in organic chemistry — a synthetic strategy with a future. Angew. Chem. Int. Ed. Engl. 32, 131–163 (1993).

    Article  Google Scholar 

  2. 2

    Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley-Interscience, New York, 1995).

    Google Scholar 

  3. 3

    Nicolaou, K. C., Vourloumis, D., Winssinger, N. & Baran, P. S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Ed. 39, 44–122 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Fialkowski, M., Bishop, K. J. M., Chubukov, V. A., Campbell, C. J. & Grzybowski, B. A. Architecture and evolution of organic chemistry. Angew. Chem. Int. Ed. 44, 7263–7269 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Bishop, K. J. M., Klajn, R. & Grzybowski, B. A. The core and most useful molecules in organic chemistry. Angew. Chem. Int. Ed. 45, 5348–5354 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Albert, R. & Barabasi, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  7. 7

    Jeong, H., Tombor, B., Albert, R., Oltval, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Albert, R., Jeong, H. & Barabasi, A. L. Diameter of the World-Wide Web. Nature 401, 130–131 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Broder, A. et al. Graph structure in the Web. Comput. Netw. 33, 309–320 (2000).

    Article  Google Scholar 

  10. 10

    Amaral, L. A. N. & Ottino, J. M. Complex networks — Augmenting the framework for the study of complex systems. Eur. Phys. J. B 38, 147–162 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Chemical Market Reporter: Chemical prices, 7 March 2005

  12. 12

    Allu, T. K. & Oprea, T. I. Rapid evaluation of synthetic and molecular complexity for in silico chemistry. J. Chem. Inf. Model. 45, 1237–1243 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet topology. Comput. Commun. Rev. 251–262 (1999).

  14. 14

    Redner, S. How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E. & Aberg, Y. The web of human sexual contacts. Nature 411, 907–908 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Fukui, K. & Fujimoto, H. Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui (World Scientific, Singapore, 1997).

    Google Scholar 

  18. 18

    Ugi, I. et al. Computer-assistance in the design of syntheses and a new generation of computer-programs for the solution of chemical problems by molecular logic. Pure Appl. Chem. 60, 1573–1586 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Ugi, I. et al. Computer-assisted solution of chemical problems — the historical development and the present state-of-the-art of a new discipline of chemistry. Angew. Chem. Int. Ed. Engl. 32, 201–227 (1993).

    Article  Google Scholar 

  20. 20

    Anelli, P. L. et al. Molecular Meccano 1. [2]rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Bissell, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Iijima, T. et al. Controllable donor-acceptor neutral [2]rotaxanes. Chem.-Eur. J. 10, 6375–6392 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Asakawa, M. et al. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 37, 333–337 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Stoddart, J. F. & Colquhoun, H. M. Big and little Meccano. Tetrahedron 64, 8231–8263 (2008).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bartosz A. Grzybowski.

Supplementary information

Supplementary information

Supplementary information (PDF 2710 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grzybowski, B., Bishop, K., Kowalczyk, B. et al. The 'wired' universe of organic chemistry. Nature Chem 1, 31–36 (2009).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing